
INELASTIC SCATTERING OF 160 MEV PIONS 

APPENDIX 

In Fig. 6 there is drawn the cone of particles 
scattered into an angle e relative to the direction 
AO of the incident particles. Obviously any azi­
muthal angle cp is equally probable. In the present 
case the direction of the primary beam lies in 
the plane P of the emulsion; therefore the dip 
angle {3 of a particle can be measured by the arc 
CF. 

The probability that a particle has a dip angle 
{3 :S. {3 0 is given by the ratio of the arc CF to the 

arc CD: p = CF /CD. OJviously p decreases with in­
creasing e. 
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Different types of waves that can be propagated in a Fermi liquid, both at absolute 
zero and at non-zero temperatures, are investigated. Absorption of these waves is also 
considered. 

T HE present paper is devoted to the study of the 
propagation of waves in a Fermi liquid, and 

proceeds from the general theory of such liquids de­
veloped by the author. 1 These phenomena in a 
Fermi liquid should be distinguished by a large sin­
gularity, connected primarily with the impossibility 
of propagation in it of ordinary hydrodynamic 

sound waves at absolute zero. The latter circum­
stance is already evident from the fact that the 
path length, and therefore the viscosity of a Fermi 
liquid, tends to infinity for T -o, as a result of 
which the sound absorption coefficient increases 
without limit. 

It is shown, however, that in a Fermi liquid at 
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absolute zero other waves can be propagated; these 
differ in nature from ordinary sound, and we shall 
call them waves of "zero sound". 

Initially, theprohlem of vibrations in a Fermi 
liquid was considered by Gol'dman2 in applica­
tion to an electron gas with Coulomb interaction he­
tween the particles. The problem of a gas with un­
charged particles, considered in detail here for 
liquids, was first considered in the research of 
Klimontovich arid Silin, 3 and later in a series of 
works of Silin. 4-6 There, the gas was considered 
to be slightly non-ideal, with an interaction satis­
fying the conditions of applicability of perturba­
tion theory. 

1. VIBRATIONS IN A FERMI LIQUID AT 
ABSOLUfE ZERO 

We begin with the investigation of those vibra­
tions at absolute zero which do not involve the 
spin characteristics of the liquid. This means that 
not only the equilibrium distribution function n 0 , 

but also the "perturbing" function 

II = IZ 0 + 0n (p) (l) 

is independent of the spin variables. At absolute 
zero n is a step function which is broken off 

' 0 
at the limiting momentum p = P 0 • * 

The energy of the quasi-particles (elementary 
excitations) is a function of n, i.e., the form of the 
function E (p) depends on the form of n (p ). By 
analogy to (l), we write it in the form 

::: = 2o (p) + ~::; (p), (2) 

where the funetion f 0 (p) corresponds to the dis­

tribution n (p). The value of o i itself is connected 
0 

with on by a formula of the form (see Ref. l): 

~::: (p) = Spa'~ f (p, p') 0n'd"=', (3) 

Inasmuch as 8n is assumed to be independent of the 
spin variable, the operation Sp is applied only to 

*To avoid excessive complication of our study, we 
limited ourselves to the simplest and most important 
caseof an energy spectrum with an occupied region re-

presented by a uniform sphere of radius Po • 

the scattering amplitude f. But the scalar function 
Spa'f can eontain the spin operator a only in the form 
of the product a [pp '] of two axial vectors: a and 
[pp'J ( we do not consider expressions containing 

two products of components of a, since for spin 112, 
as is well known, they reduce to expressions con­
taining a in the zeroth or first degree). But this 
product is not invariant to a time reversal and 
therefore cannot enter into the invariant quantity 
Of. Thus a drops out completely and Of is shown 
to he independent of the spin variable. 

The kinetic equation for a Fermi liquid has the 
form: 

~In + .!!!!._ as _ .!!!!._ ~ = I (n) 
iJt iJr iJp iJp iJr ' (4) 

where I (n) is the integral of collisions between 
quasi-particles. The number of collisions is 
proportional t<t the square of the width of the dif­
fusion zone, so that at absolute zero, I(n) = 0. 
Substituting (l) and (2) in (4), and considering that 
n 0 and i 0 do not depend on r, we get 

iJiln + iJ0n aso iJile iJno - 0 
Tt -ar- ap--Tr ap- · 

and assuming on and of to be proportional to 

e-iwt+ikr' 

(kv- w) on= kv a/:so 0:::, (5) 

where we have introduced the velocity of the quasi­
particles v = a( 0 I ap. In view of the absence of 

the &--funetion an 0 I a( from the right hand side of this 

equation, there actually enter in them only the val­
ues of all quantities taken at the limit P = Po of 

the (unperturbed) Fermi distribution. We introduce 
a new notation for what follows: 

Then we can write Eq. (3) in the form: 

oe = ~~ Fon'de'do' 1 4;:. 

(6) 

Here only the on' are functions changing rapidly 
with f '. Therefore, we can rewrite this expression. 
in the form: 

(7) 

where the function 
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v (n) = ~ 0n (p) ds (8) 

has been introduced which depends only on the di­
rection n of the vector p, and the function F(p,p ') 
is taken on the boundary of the (unperturbed} Fermi 
distribution; here F depends only on the angle X 
between p and p ', 

We note for what follows thatthe relation found 
in Ref. 1, which connects the actual mass m of 
the particles with the effective mass ,;;*of the 
quasi-particles, can, with the help of the function 
F(x) be written in the form 

f: cos i = (m'' 1m)- 1, (9) 

where the bar denotes averaging over the directions 
(in the derivation of this relation, we assume in 
(6) that f = p2 I 2m*). The equation for the veloci-

ty of ordinary sound c can be put in the form 

F = 3 mm • c2 / p~ - 1. 
(10) 

Let us substitute (7) in Eq. (5) and integrate the 

latter over d£. This gives 

(kv-w)v ==- kv ~ F-ldo' 14::. 

Let us take the direction of k as the polar axis, and 
let the angles (), Cf' define the direction of the mo­

mentum p (and the direction of v coinciding with it) 
relative to this axis. Also, we introduce the propa­
gation velocity u = wlk of this wave, and the nota­
tion TJ = ul v , so that we can finally write there­
sultant equation in the form 

(7j- COS fl) 'I (0, 9) (ll) 

=cos r; ~ F (x)" (0', 9') do' 1 4;:. 

This integral equation defines the principal vel­
ocity of propagation of thew aves and the form of 
the function v ((), cp ) in them. The latter has the 
following graphic meaning. The fact that o n is 
proportional las is evident from Eq. (5)] to the de­
rivative iJn 0 I a{ means that the change of the dis-

tribution function for vibrations reduces to the de­
formation of the boundary of the Fermi surface (a 
sphere in the undisturbed distribution). The in­
tegral of (8) represents the magnitude of the dis­
placement (in energy units) ofthis surface in the 
given direction n. 

We at once note that it follows from the form of 
Eq. (ll) that the real (only the undamped vibrations 
are of interest to us) value of TJ ought to exceed 
1, i.e., the propagation velocity of the waves sat­
isfies the inequality 

u>v. (12) 

As an example, let us investigate the case in which 
the function F (x_l reduces to a constant (we de­
note it by F 0 ). The integral on the right hand side 

of Eq. (ll) does not depend on the angles (), cp in 
this case. Therefore the desired function v has the 
form (we omit the exponential factor): 

v =canst ·cos fJ I ('lj- cos 0). (13) 

The limiting Fermi surface has the form of a surface 
of revolution, elongated in the forward direction of 
the propagation of the wave, and flattened in the 
opposite direction. For comparison, let us point 
out that the ordinary sound wave corresponds to a 
function v of the form v = const · cos tl.which re­
presents the displacement of the Fermi surface as 
a \\~hole, without a change in shape. 

For the determination of the velocity u, we sub­
stitute Eq. (13) in (ll) and get 

71: 

- - 2<. Stn 0 dO = I F0 ~ cos 6 . 
1m 7J -cos() · 

0 

Carrying out the integration, we find the following 
equation, which determines in implicit form the 

velocity of the wave for a given value of F 0 

. ( )- 7J 1 '1)+1 1 
<p 'lj =y n 7J-i -1 = -p-;;· 

(14) 

The function cp(TJ) decreases monotonically from 
+ m to 0 for a change of TJ from l to m , always 

remaining positive. It then follows that the waves 
under consideration can exist only for F > 0. 

0 
Inasmuch as the function F is proportional to the 
scattering amplitude, taken with opposite sign (at 
the angle 0°), of the quasi-particles with one 
another [(see Ref. 1)] , then the latter must be 
negative, which corresponds to the mutual colli­
sion of quasi-particles. However, it must be em­
phasized that this conclusion applies only to the 
case F = const. If the function F (X) is not con­
stant (and at the same time is not small compared 
with unity; see below), then propagation of zero 
sound is in general possible, bor both attractive 
and repulsive interactions of the quasi-particles. 
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For TJ -+CXJ: cp{TJ)"' l/3TJ 2 • Therefore, large F 0 

corresponds to TJ = VF;/3· In the opposite case 

of F 0 -+ 0, we find that 'rf tends toward unity ac-

cording to the relation 

(15) 

The latter case has much more general value. It 
corresponds to zero sound in an almost ideal Fermi 
gas for arbitrary form of the function F (x). Actu­
ally, an almost ideal gas corresponds to a function 
F which is small in absolute magnitude. It is 
seen from Eq. (ll) that in this case TJ will be close 
to unity and the function v will be significantly 
different from zero only for small angles e. On this 
basis, and being concerned only with this range 
of angles, we can replace the function F in the in­
tegral on the right side of Eq. (ll) by its value for 
X= 0 (fore -.o and e' -.o, X -.o also). As a 
result, we again recover Eqs. (13) and (15) with the 
constant F 0 replaced by F (0) (this result coin-

cides with that obtained earlier by Silin 4 ). 

We note that in a weakly non-ideal Fermi gas, 
the velocity of zero sound exceeds the velocity 
of ordinary sound by a factor of -/3. Actually, for 
the former, we have TJ"' 1, i.e., u "'v. For the 
velocity of ordinary sound we get from Eq. (10) {neg­
lecting the term ji in it and setting m* "' m ): 
c2 "'Po 213m2= v2/3 

In thegeneral case of an arbitrary dependence of 
F (x), the solution of Eq. (11) is not well defined. 
In principle, it permits the existence of different 
types of zero sound, which are distinguished from 
one another by the angular dependence of their 
amplitude v (e, Cfl), and which are propagated with 
different velocities. Along with the axially sym­
metric solutions of v (e), asymmetric solutions 
can also exist. In these v has an azimuthal 
factor e±im? (m ""integer) 

Thus, for a function F (x) of the form 

F = F 0 + F 1 cos z (16) 

= Fo + F 1 (cos 0 cos 0' +sin 0 sin (J' cos (·p- ·p')) 

solutions can exist with 

Actually, substituting Eq. (16) in {ll) and carrying 
out the integration over d1 cp '(assuming in this 
C'}Se that v = f (6) ei'li), 

we obtain 

'"' 
('~-cos, 6) f = : 1 cos 0 sin fJ ~sin~ O'f'd6'. 

I) 

Thence, 

t sin 6 co~ 0 
'I = cons . · ei"' 

· -~-co~() · {17) 

Conversely, substituting this expression in the 
equation, we obtain the relation 

(18) 

which determines the dependence of the propagation 
velocity on F 1 . The integral on the left side of 

the equation falls off monotonically with increase m 
the function TJ • Therefore its maximum possible 
value is achieved for TJ = l. Computing the in­
tegral, we find that the corresponding (the least 
achieved) value ofF 1 is 6. Thus, propagation of 

the asymmetric wave of the form (17) is possible 
only for F 1 > 6. 

Turning to a real Fermi liquid-the liquid He 3 

--it is reasonable to attempt to . approxim~te the 

unknown function F (x) by the two term expression 
(16). We can determine the coefficients F 0 and 
F 1 entering into it by means of the relations 

F I) = 3 mm * c2 / p~ - 1 , F 1 I 3 = m * / m - I 

[see Eqs. (9) <\lld {lO)], knowing the values of 
the effective mass m* and the velocity of ordi­
nary sound c. We can derive the first from experi­
mental data on the temperature dependence of the 
entropy {in the lowest temperature 1 region). From 
the data available at present, 7 we get m* = 
1.43 m (m is the mass of the He 3 atom). For the 
velocity c, we get 195 m/sec from thedata of Wal­
ters and FairbankS on the compressibility of 
liquid He3. Finally, p 0 is obtained directly from 
the density of the liquid: 

p0/h = 0.76x!O" 

On the basis of these data, we obtain 

(19) 



OSCILLATIONS IN A FERMI LIQUID 105 

From these values, we can draw a conclusion 
about the fact that in liquid He 3 the propagation 
of asymmetric zero sound is impossible. For sym­
metric zero sound, the solution of the equation with 
the function F (x) from (16) and (19)* leads to the 
value 71 = 1.83, when we obtain u = v 
= l.83p 0 /m* =206m/sec. 

The possibility of the propagation of waves in 
a Fermi liquid at absolute zero means that its 
energy spectrum can automatically possess a "Bose 
branch" in the form of phonons with energy E =up. 
However, one must say that it would be incorrect 
to introduce corrections corresponding to this branch 
in the thermodynamic quantities of the Fermi 
liquid, inasmuch as it has a much higher power 
of the temperature (T 3 in the heat capacity) than 
the departures from the approximate theory dev­
eloped in Ref. 1. 

2. VIBRATIONS OF A FERMI LIQUID AT 
TEMPERATURES ABOVE ZERO 

for low, but non-zero, temperatures, mutual 
collisions of quasi-particles take place in the 
Fermi liquid. The number of these collisions is 
proportional to T 2 • The corresponding relaxa­
tion time (the free path time) is T"-' l/T2 . The 
character of the waves propagated in the liquid na­
turally depends fundam~ntal~y on the re_lati~ms be­
tween their frequency and the reciprocal of the re­
laxation time. 

For wT<< 1 (which is actually equivalent to 
the condition of the shortness of the free path 
length of the quasi-particles in comparison with 
the wave-length A), the collisions succeed in 
establishing thermodynamic equilibrium in each 
(small in comparison with A) element of volume of 
the liquid. This means that we are dealing with 
ordinary hydrodynamical sound waves, propagated 
with a velocity c. 

If w T>> 1, then, on the contrary, the colli­
sions do not play essential roles in the process of 
the propagation of the vibrations, and we will 
have the waves of zero sound considered in the 
preceding section. 

In both these limiting cases, the propagation of 
waves is accompaniedby a comparatively weak 
absorption. In the intermediate region, w rv 1, the 
absorption is very strong and isolation of the diff­
ferent types of waves as undamped processes is 
not possible here. 

*These computations were carried out by A. A. Abriko­
sov and I. M. Khalatnikov. 

One can easily obtain the temperature and fre­
quency dependence of the absorption coefficient y 
in the region of ordinary sound with the aid of the 
known formula for the absorption of sound (see 
Ref. 9, for example), according to which y is pro­
portional to the square of the frequency and to the 
viscosity coefficient*. Inasmuch as the viscosity 
of a Fermi liquid is }foportional to 1/T 2 10 , then 
we find that 

(20) 

Absorption in the region of zero sound differs 
essentially in its character from absorption of 
ordinary sound. In the latter, the collisions cannot 
lead to a dissipation of the energy "into the noise" 
of the distribution, which is changed only by the 
sound vibrations as such. This is connected with 
the circumstance already mentioned, that a distri­
bution changed in this fashion remains in thermo­
dynamic equilibrium in each -element of the volume. 
Therefore, the absorption of ordinary sound is con­
nected with the effect of the collisions on the dis­
tribution function itself. 

In the region of zero sound the collisions lead 
to ~bsorpt.ion ."into the background" of the distri­
butiOn wh1ch IS changed only by the vibrations them­
sel~e.s, .whic? in thiscase are not in thermodynamic 
eqml~bnum (m~smuch as the form of the limiting 
Fermi surface IS deformed). This change in the 
distribution function does not depend on the fre­
quency' and therefore the absorption coefficient will 
not depend on the frequency either. The depen­
dence of y on thetemperature is determined by its 

proportionality to the number of collisions, i.e., 

·r C'.J P for xT / h :::?> w ~ 1/ 't. (21) 

The upper limit of the region of applicability of this 
formula is determined by the inequality7fw << x. T 
( x. is Boltzmann's constant), which allows a clas­
sical consideration of collisions. We recall that 
the inequality assumed here, 

i.e., 

(smallness of the quantum uncertainty of the energy 
of quasi-particles in comparison with x. T), must 

*The cont!i?uti.on toy fr?m second viscosity and ther­
mal conductivity IS proportional to a much higher power 
of T and is therefore inconsiderable. 
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hold since it is the condition of applicability of 
everything generally developed in the theory of the 
Fermi liquid. I 

The determination of the absorption coefficient of 
zero sound in thefrequency range 1iw > X T 
requires quantum consideration. The corresponding 
calculations can he simplified if we develop them 
in such a way that we express the desired "quan­
tum" absorption coefficient in terms of the "classi­
cal" from Eq. (21). 

The absorption of sound quanta takes place in 
the collisions of quasi-particles. If we denote by 
£ 1 and £ 2 the energies of the quasi-particles he-

fore and after collisions, then at a given fre­

quency w, they are connected by the law of con­
servation of energy 

In addition to the collisions, we must also con­
sider the inverse collisions, which are accom­
panied by the emission of sound quanta. Taking 
into consideration the well known properties of 
the collision probabilities of Fermi particles, we 
find that the total rate of decrease of the number of 
sound quanta as a result of collisions is given by 
the expression 

\~~~ w (Pl• p~; p~, p~) {n1n2 ( 1 -11~) (1 - n~) (22) 

~ n~n~ (1- n1) (1 - !lz)} 

X 0 (p~ + P;- P~- P2- hk) 

The delta functions in the integrand allow the satis­
faction of the laws of conservation of energy and 
momentum. 

In the integral (22), the essential values of the 
energy are only those in the region of diffuseness 
of the Fermi distribution. In this region, the ex­
pressions under the integral sign are changed 
strongly only by multipliers which contain n (£). 
Furthermore, it should be noted that the angular 
integrals in (22) are practically unchanged in the 

transition from 'the "classical" region 

ft(i) <-f;. xT. 
to the "quantum" region 

In view of this fact, it will he sufficient for us to 
calculate the integral 

taken only over the energy. Then, substituting 

/l (s) = [e(E-fJ.)/xT + 1 rl 
and introducing the notation 

X=(s-r;.)jxT, ~=t~(i)jxT, 

we get (omitting the factor T 3 ) 

In view of the rapid convergence of the integral, the 
region of integration can be extended from - m to 
+m. 

For integration purposes, we transform to the 
variables x 1 , x 2, Yl' y 2 , where y = x _ x'. 

Integration over x 1 and x2 is elementary and gives 

+oo 
y (~ + y) dy = - (I - e·-~) ~ 

-00 
(eY -1) (e-y-1; -1) 

For calculation of the resulting difference of two 
diverging integrals, we introduce as an inter­
mediate the finite lower limit -A and write: 

+oo +oo 
J = \ y (~ + y) dy- \ y (y- ~) dy 

J eY -1 J eY -1 
-A -A-f-1;, 

00 

~ 
-A 

Y(V-~)dy 

eY --1 

Keeping in mind that we shall transform to the 
limit A --.m, we neglect eY in the denominator of the 
second of the integrals. The first we rewrite in the 
form 
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0 

= ~3 + ~ ( -1 ----"_!-e--,.-Y - y) dy 
-A 

A 

- _7!2 + \ y dy + -1!:_2_ • 
- 6 ~ eY-1 2 

0 

Carrying out reductions and then transforming to 
A -+CXJ, wefinally obtain 

J = (2~"2 I 3) (I + ~2 I 4-;:2). 

The desired absorption coefficient y is propor­
tional to f. The coefficient of proportionality 
between them is so determined that for g << l, 
y = y cl. We then obtain: 

(23) 

Considering that Ycz "'T 2 , re find that in the limit 

of high frequencies: 

1 c---; w2 · for nw ~> xT, {24) 

i.e., the absorption coefficient remains propor­
tional to the square of the frequency, but does 
not depend on the temperature. We note that the 
transition from the formula for "low" to the for­
mula for "high" frequencies takes place at 

hw~ 21txT, 

(and not 1iw"' x.T). * The result of (24 re­
fers, in particular, to the zero sound of all fre­
quencies at the absolute zero of temperature. 

3. SPIN WAVES IN A FERMI LIQUID 

In addition to a consideration of zero sound in 
Sec. l, which does not involve the distribution of 
spins, in a Fermi liquid at absolute zero, waves of 
other types can also be propagated. These we call 

*Considering the frequencies w >> x.T/Ir, we at the 
same time assume satisfaction of the inequality 

hw<f:.xT0 

(T 0 is the temperature of degeneratio.n of the Fermi dis­
triliution). In the opposite case, partie les from the 
"depth" of the Fermi distribution take part in the ab­
sorption and all the theory developed here would become 
inapplicable. 

spin waves.* 
In this section, we denote by K the function 

K = f (p, p') 4-.:p2 dp I (2.-cfi)S dz, (25) 

in which the operator Sp is not used. In the cal­
culation of exchange interaction between the 
quasi-particles, this function contains terms which 
are proportional to the product aa ', i.e., it has the • 
form: 1 

(26) 

[F coincides with the function {6) used above] . 
In place of Eq. {11) we have now 

('11- COS 0) v = cos 0 Spa• ~ Fv' do' I 47t. (27) 

In addition to the solutions v (n) considered earlier, 
which do not depend on the spin, this equation 
also has a solution of the form 

V=f1(n)a. (28) 

Substituting (26) and (28) in (27), completing the 
operation Sp and dividing both sides of the equa­
tion by a , we get 

(YJ- cos 0) 11 =cos~~ Gf1' do' 1 16c:. (29) 

We see that for each of the components of the 
vector fl., we obtain an equation which differs from 
{11) only by the replacement ofF by G/4. There­
fore, all the further calculations of Sec. l can im­
mediately be appliedto the spin waves. 

In the real liquid He 3 , we can determine from 
available experimental data on its I.!!.agnetic sus­
ceptibility only the mean value of G, whichwas 
pointed out previously-1.9. Inasmuch as this 
quantity is negative, then (in view of the results 
of Sec. 2) it is most probable that the propagation 
of spin waves in liquid He3 is not possible. Such 
a conclusion, however, is in no sense categorical. 

In conclusion, I wish to express my thanks to 
A. A. Abrikosov, E. M.Lifshitz and I. M. Khalatni­
kov for useful discussions. 

*The equation for spin waves in weakly non-ideal 
Fermi gas was considered by Silin.6 
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