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It may be shown that the product of two quanti­
ties of anomalous parity is a normal quantity 
which decomposes into four quantities corresponding 
to the four possibilities with respect to space and 
time reflections. In the case of a product of a 
normal and an anomalous representation the corre­
sponding quantities have anomalous parity. 

Since the interaction Lagrangian must be a 
scalar (i.e., it must be invariant with respect 
to the transformations T 01 , T 10' T 11), each 

term of the interaction operator must contain an 
even number o£ wave functions of particles with 
anomalous parity. Therefore in the case of in­
variance under space and time reflections the 
following statement must hold: if in a reaction 
only particles with normal parity occur then con­
servation of parity must hold; however, if par­
ticles with anomalous parity also take part in the 
reaction then conservation of normality must hold, 
i.e., the left and the right hand parts of there­
action equation must both contain either an even 
or an odd number of anomalous particles. 

This argument enables us to divide particles 
into classes with normal and anomalous parities. 
If we ascribe anomalous parity to K-mesons and 
normal parity to IT-mesons we may conclude that 
the A, l: particles have the same normality, and 
so do the partie les n, 8. For this it is sufficient 
for example, to consider the strong interaction 
reaction 

1t-+p-+ A0 +6°; K-+p-+ !:++1t-; :::- ...... K-+A0 • 

We have ascribed anomalous parity to the K­
meson. The operator for the spatial reflection 
is given by the rmtrix T 10 [Eq. (4)], and conse­
quently theK-meson may exist in two states dif­
fering in their spatial parity. The masses corre­
sponding to these two states must be the same. 

From the fact that K-mesons which have anoma­
lous parity decay into IT-mesons it follows that 
normality is not conserved in slow reactions. 
Within the framework of the above explanation 
this is possible only in the case that the Lagran­
gian is not invariant under time reflections. The 
hypothesis proposed by Feynman with respect to 
the lack of invariance under spatial reflections 
appears to us to be improbable. On the other 
hand, sufficient foundations do not exist to assume 
that the Lagrangian is invariant under time reflec­
tions in the case of weak interactions. Such an 
explanation may also be related to the work of 
Lee and Yang 2 • 

We express our thanks to Ia. B. Zel'dovich and 
V. V. Sudakov for valuable discussions. 

*The first rep-esentation contains lk0 + k 11 undotted 
and !k0 - k 11 dotted indices, while the second rep-esen-

tation has these numbers reversed (in spinor notation). 
*"' These formulas hold for integral values of k. For 

half-integral k in the above formulas k should be re­
placed by k + ~. 

1 I. M. Gel'fand and A.M. laglom, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 18, 703 (1948). 

2 T. D. Lee and C. N. Yang, Phys. Rev. 102, 290 
(1956). 
Translated by G. M. Volkoff 
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P ODGORE TSKII 1 has pointed out that it would 
be possible to determine the spin of a muon by 

using data on the angular c<rrelation between 
gamma rays emitted in successive transitions of 
mesic atoms. We wish to examine this problem in 
the present note and also to propose a method 
of verifying the spins of nuclei2 for which I= 0 
is doubtful or has been obtained only from theoreti­
cal considerations unsupported by experiment; 
the formulas which are derived will be used to de­
termine the spins of all types of mesons. 

We know 3 that for light rresic atoms (Z < 15), 
the probabilities of radiation transitions are small 
compared with the probabilities of conversion 
transitions. For heavier mesic atoms with small 
quantum numbers (n, l), the probabilities of con-
version transitions can be neglected. The follow­
ing is an expression for the correlation function 
W(rJ) which is suitable for not very large Z (15 < Z 
<50)*: 

N 

W (-&) = ~ A~ 1,P2k (cos-&); A~"= A2"b2k; 
(l) 

A2k = A2k (L1L2jAjBjC) = (-i)iA-iB (2L1 + 1) (la) 

(2L 2 + 1) (2jB + !_)C1_~ ~; L,-1 C1_~~; L 2-1 W{jBjBLlLl; 

X 2kjA) W(jBjBL2L2; 2kj~_); 
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b2k = ~ (2F8 +1)2 W2 (j 8 1 2kF 8 ; F 8 j 8 ) I 21 + 1. (1b) 
Fs 

Here L 1 and L 2 are the angular momenta of 
the light quanta; jA, j 8 and ic are the total 

(orbital plus spin) angular momenta of the meson 
in the initial, intermediate and final states; and 
F is the sum of the mesic (j) and nuclear (I) angu­
lar momenta. In (1b), it was considered that for 
these mesic atoms the ratio of the hyperfine 
structure to the level width of the intermediate 

state is Y FF -/2yB » l. (For example, for AI, 

yFF -/2y8 "'10 ev/10-5 ev = 106 .) 

Formula (l), which was derived on the assump­
tion that the nuclear spin does not change in mesic­
atom transitions, agrees in form with the function 
obtained by Alder5 for the angular correlation of 
gamma rays emitted by a nucleus. This exJression 
can be used to verify the spins of nuclei (such as 

S34 Ca40 and S74) for which I= 0 has not 
16 '20 34 
been confirmed experimentally. 

As an example, we note that the anisotropy is 
A = 0.43 and 0.25 for the transitions 1/2(D)3/2(D)l/2 
with I= 0 and 1/2, respectively. 

For heavy mesic atoms, finiteness of the nucleus 
requires the calculation of the correlation function 

in trans it ions of the type l A (L 1)Z B (L 2 )l cwhe re l A, l B 

and lt; are the orbital angular momenta of the meson in 
the initial intermediate and final states, respectively. In 
this case the fine structure must be taken into 
account, as well as the hyperfine structure. Their 
contribution results from the fact that, because of 
the spin-orbit interaction, after emission of the 
first quantum, the direction of the orbital angular 
momentum is changed in the intermediate state, 
while interaction with the nucleus results in a 

change of direction of the total angular momentum 
j. These effects are important because the life­
time of the intermediate state exceeds the pre­
cessional periods of the angular momenta. (For 
example, for lead v .. '"' 200 kev, v , "-' 3 kev 

11 FF ' 
2y"' 1 kev.) 

Thus for heavy mesic atoms, confining our­
selves to electric transitions (which are the most 
important) we obtain 

N 

W (&) = ~ A~k p2k (cos.&), 
k=o 

(2) 

(2a)** 

Fs-F~i(li~ 

(2F8 + 1) (2F~ + 1) W2 (jrJ2kF~; F8j~) 
(2/ + 1) (2s + 1) [1 + (vFF' 1 2ys)2j 

(2h} 
x (2jfl + 1) (2j~ + 1) W:: (lss 2kj~; j fl/8 ), 

with both the fine structure and the hyperfine 
structure entering· into v '· 

For a hyperfine struct~~ which is small com­
pared with 2y B, Eq. (2) will reduce to Alder's 
function (as occurs for I= 0). 

Any additional interaction can be taken into 
account by an analogous change in b2 k. In parti­
cular, for the mesic atoms under consideration 
there arises the question of taking into accou;t 
the interaction with the electron shells. However 
because of the small splitting with 2y the result: 
. b B Ing 2 k reduces to (2b). 

Since for the mesic atoms under consideration 
vjj '/2y B » l. 

(2Fs + 1) (2F~ + 1) W~(j 8J2kF~; F 8 jfl) (2j fl+ 1)2 W2 (l8 s 2kjfl; jflt8 ) 

(2/ + 1) (2s + 1) [1 + (vFF, 1 2ys)2 ] 

(3) 

where vF F 'is the sum of the splittings induced 
by the interactions of the nuclear magnetic dipole 
and electric quadrupole moments with the meson. 

Denoting b2 k by means of b251 (l8 ), we have; 

bg1 (Is)= 1, (3a) 

b~~ (Is)= 1, (3b) 
(3c) 

bs 'I• (/ ) _ 1 ""' [ 1 ( v )' 2 
2k B - 1 + (v j 2y )2 L.; 1 + 2 -2 - (3d) 

B Fsifl Ys 

X (2jfl+1) 2 W2 (18 s2kjfl; j(lls). 

2s + 1 ' 
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We see from (3a) that the renormalization 
(W(,?) do /4rr = 1 is insured. In the absence of 
interactions, the "reduction factor" b2 k has its 
maximum value (= 1) (3b). The special case 
I= 0 (3c) was examined by Podgoretskii 1 , who 
did not, however, take the fine structure into 
account. His criterion for deciding whether the 
spin of a /1. meson is1/2or 3/2 in the transition 
3p -+ 2s -+ 2p is incorrect, since it follows from (2) 
that in both instances the distribution is isotropic. 

In (3d), vis the hyperfine structure of a mesic 
atom which results from the interaction of the nu­
clear and mesic magnetic moments. In (3e), it is 
considered that the splitting which results from 
the electric quadrupole interaction is of the order 
of magnitude of the spin-orbit coupling 6 , i.e., 

VFF'f2YB » l. 
Following are the values of the anisotropy A 

for the radiative trans it ion 2s -+ 2p -+ 1s for different 
p.-meson spins (with I= 0): 

S=O 

A= 1 0.273 0.225 0.197 

Substituting for lead (v/2y) 2 = 9, we get 

1= 1/2 S= 1/2 A=0.175 

A= 0.150. 

Thus, measurement of the anis<tropy A with an 
accuracy which makes it possible to distinguish 
a difference of 0.08 is sufficient to determine 
the spin of the p. meson when the nuclear spin is 
zero with mesic spin 1/2; then it is also suffi­
cient to determine whether the nuc lens has zero 

· (f I W 182 p 194 d Pb204) spm or examp e, 74 , 78 t an 82 • 

I am deeply grateful to Professor I. Ia. Pomeran­
chuk for suggesting the problem and to K. A. Ter­
Martirosian and L. M. Afrikian for their interest. 

* In deriving this as well as. the following exJ!ession 
we used the well-known contraction relation of "Clebsch­
Gordon coefficients and also the contraction relation 
of Racah coefficients4 : 

~(2:t..+1) W(a':f..ctc; ac') W(b:t..[3c'; b'c) W(a':t..yb; 
A 

ab') = W(actb[3; cy) W(a'ctb'[3; c'y). 

** See (la). 
1M. I. Podgoretskii, J. Exptl. The_oret. Phys. (U.S.S.R) 

29, 374 (1955); Soviet Phys. JETP I, 379 (1_~55). 

(3e) 

2 Experimental Nuclear Physics, Ed. Segre (Russian 
translation IlL, 1955). 

3 J, A. Wheeler, Rev. Mod. Phys. 21, 133 (1949). 

4 Biedenharn, Blatt and Rose, Rev. Mod. Phys. 24, 
249 (1952). . 

5 K. Alder, Helv. Phys. Acta. 25, 235 (1952) 
6 L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 

(1953) 
Translated by I. Emin 
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S OME time ago, it was esta!Jlished 1 that the 
dielectric losses (tan 8) of alkali-halide 

crystals are determined by conductivity losses. 
Breckenridge 2 , studying the properties of certain 
alkali-halide crystals and the silver halides, was 
the first to find that after preliminary heat treat­
ment of these crystals, small maxima of relaxation 
losses of the Debye type were observed in the 
value. of tan 8. Many authors have atterqpted to 
reproduce these results. Some of them 3- 6 suc­
ceeded in observing relaxation losses in these 
crystals; however, the results of the observa­
tions of different authors were contradictory. We 
have undertaken a careful study of the dielectric 
properties of alkali-halide crystals, especially 
the nature of losses in them. 

In contrast to the investigations of previous 
authors, we have carried out a study of both tem­
perature and frequency dependencies of the die­
lectric constant and tan 8, not only under atmos­
pheric conditions, but also in a vacuum, over a 
wide range of temperatures and frequencies 
(from -1700 to 3300 and from 102 to 10 7 cps under 
atmospheric conditions, and from -140° to 550° 
and from 102 to 106 cps in a vacuum). We 
studied single crystals of LiF, NaCI, KCI, KBr, 
CsBr, KJ, KR:-5 and KCl-KBr, both pure and with impuri­
ties of Ag, Cu, Tl, Cd, Pb, In, introduced in 




