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Figure 2 gives the angular distribution of sec­
ondary protons. It can be seen thM a considerable 
fraction of the particles are emitted in directions 
close to the line of motion of the deuteron. About 
90% of the fast protons are emitted in the for-
ward hemisphere; 30% of these are in a narrow 
cone of 30° apex angle. The half width of the 
angular distribution is 18°, which exceeds the cal­
culated half width (9.50) for the angular distribu­
tion of protons resulting from "stripping". The 
gray tracks are distributed symmetrically to the 
right and left of the direction of the incident deu­
teron. 

The energy distribution of the protons (Fig. 3) 
was obtained by counting the grains in the tracks. 
The energy spectrum covers the range from 50 to 
210 mev and possesses a sharp maximum at 80-
90 mev. The half width of the energy distribution 
of all protons is 70 mev. 

The dashed line in Fig. 3 is a histogram which 
represents the energy distribution of protons whose 
emission angle was not greater than 10°. The 
peak of this distribution is at about llO mev, which 
is half of the initial demeron energy . The half 
width of the distribution is 40-50 mev, which agrees 

with the calculation of !'!..E y, = 2(€d/E) = 45 mev 
for the transparent nucleus 2model and with 
!'!..Ey, = 34 mev for an opaque nucleus. A compari­
son of the theoretical and experimental results 
shows good agreement. Therefore the protons in­
cluded in the above energy distribution resulted 
Jredominantly from the disintegration of deuterons 
by nuclei. 

Our analysis of the angular and energy distri­
butions of the protons enables us to state that 
two processes are mainly responsible for the 
emission of fast protons; these are "stripping" 
and a cascade process. 

1 R. Server, Phys. Rev. 72, 1008 (1947). 

2 Chupp. Gardner and Taylor, Phys. Rev. 73, 742 (1948) 

3 S.M. Dancoff, Phys. Rev. 72, 1016 (1947). 
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I N order to explain the phenomenon of saturation 
of nuclear forces and to provide a basis for a 

nuclear shell model Schiff proposed the simplest 
nonlinear generalization of the Klein-Gocdon equa­
tion for meson theory 1 

D rp- kG - ).rp3 = 0, (1) 

where k 0 and A. are constants. The renormalized 

equation of the pseudoscalar theory with pseudo­
scalar coupling has the same form in the case of 
weak interaction. 2 

If we restrict ourselves to the static approxima­
tion we shall obtain for the spherically symmetri­
cal case the equation 

in which the variables x = k 0 r, u = ,;>:T have 

been introduced. 
This equation has been discussed by many 

authors largely in connection with the phenomenon 
of nuclear saturation, and in such cases the equa­
tion was discussed fort he case of a certain given 
nucleon source density. 3 - 8 In the p:esent note 
we shall obtain asymptotic solutions of Eq. (2), 
and shall also integrate the equation numerically. 

According to a theorem due to Hardy, 9-10 every 
rational function R (x, u, u') is necessarily mono­
tonic along the solution u (x) of the differential 
equation ofthe form 

u" = P (x, u) I Q (x, u), 

where Q, P are polynomials in u, x. The applica­
tion of this statement to the ratio of any two arbi­
trary terms of equations Qu '- P = 0 allows one to 
find asymptotic solutions of the differential equa­
tion for x -+CO. The limit of such a ratio may be 
equal to ±co, 0, or to a constant different from zero, 
and it is guaranteed that there must exist at 
least one ratio which tends to a constant different 
from zero. A similar result may be shown to hold 
for an equation of the type 

u" = P (u, x) I Q (u, x). 

That solution of Eq. (2) is of physical interest 
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which diminishes as x --+CXJ. The asymptotic be­
havior of such a solution for large values of x 
may be represented in the form 

where g is an arbitrary constant. 
For small distances, Eq. (2) can be replaced by 

the asymptotic souation 

Equation (4) is an analog of the Emden-Fowler 
equation, and it can be reduced to an equation of 
the first order. 10 Indeed, as a result of making 
the substitution x = e-5 and of the introduction 
of y = du/ dt, we shall obtain 

dy I du.= u 3 I y- 1. (5) 

A qualitative investigation of the behavior of 
phase trajectories in the (y, u) plane shows that a 
characteristic feature of all the solutions of Eq. 
(4) is the existence of a singular point whose posi­
tion is not fixed, hut depends on the constant of 
integration. 

Applying Hardy's theorem to Eq. (5), we obtain 
for the asymptotic solution (for small distances) 

u =- Jf2; ln (xI xk), (6) 

where x k is an arbitrary constant. 

-u 

In addition, Eq. (2), was integrated numerically. 

The integration was carried out by starting with 
the asymptotic solution at large distances. To each 
value of the quantity g corresponds a definite value 
of the quantity x k • 

As may be seen from the diagram the solution 
obtained by numerical integration (solid curve) 
may be roughly approximated by the functions 
(3) and (6) matched at thepoint x= l (dotted 
curves). 

The author hopes to give the interpretation of 
the result obtained above and its application to 
the description of the properties of a system of 

two nucleons at low energies in a subsequent arti­
cle. 

The author wishes to express his gratitude to 
A. A. Borgardt for his interest and assistance in the 
present work. 
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S OMETIMES for the theoretical study of plasma 
one uses in place of the kinetic equation for 

the distribution function of the particles the simpler 
"transport" equations for the moments of this 
function (see, for example, Refs. 1,2). In so doing, 
in order to obtain a closed system of equations, 
one usually assumes that the distribution function 
is Maxwellian. Such an approximation cannot be 
applied to the description of high frequency plasma 
oscillations since in this case the electron dis­
tribution deviates appreciably from the Maxwellian 




