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I F a current-carrying wire moves in the vicinity of 
any object, then a displacement current and a 

conduction current are induced in this object. The 
field of these currents will, in turn, act on the wire, 
causing it to be attracted to or repelled from the 
surface. To a large degree· this is similar to what 
happens when a moving charge passes close to a 
dielectric.1 We shall here consider the simplest 
case of this phenomenon, namely when a straight 
wire with current J moves uniformly (v < < c) in 
empty space parallel to the plane surface of a con
ducting medium. Let l be the distance between the 
wire and the conductor, and a, f, and J1 he the con
ductivity, complex dielectric constant, and magne
tic permeability of the medium, so that f = f 0 

+i477a/w; we shall neglect the dispersionf 0 a, 

and v. 
The x axis shall be chosen along the current, and 

the z axis in the direction of motion of the wire. 
The origin shall be located on the conductor sur
face. Then 1 

Fy =- (J I c) 2 ReP; Fz =- (J I c) 2 ImP, (1) 

Q') 

P = 2 I 1 - 0( e-2k 1dk k I ~ 1 + 0( ' = (J) v, (2) 
0 

<X= (1 I !J.) [1- ([J.c:0 + i4rtcr!J.I kv) ~2]'1•, Re <X> 0.(3) 

As can he seen from (2) and (3), in this case the 
well known analog of the critical velocity for Cer
enkov radiation v = c/n is the quantity 

(4) 

(assuming that Jlf 0 (3 2 << 1 ), which we shall call 

the first characteristic velocity. For instance, 
for copper, this is== 102 / l em/sec. To find the 

force (F z , F Y ), we need only calculate P, which 

we shall do for the two limiting cases J1 = 1 and 
J1 >> l. 

In the first case, for the condition 

which is in fact always satisfied, the wire will be 
repelled from the wall for any velocity, and 

where v = v/U 1 , and H ?) is the Hankel function. 

If v << 1, then 
Fy = (J I c)2vrt I 2!, Fz 

= (J I c)2 (vI 2l) [In (vI 2) + C- 112], 

and if v >> 1, then 

(6) 

It can be shown that for v == 1.9, the force F z 
is a maximum, physically, this is related to the 
fact that an increase in v leads to a change in 
the relation between the ohmic and inductive im
pedences to the current induced in the conducting 
wall by the moving wire, The v- 11 2 dependence 

of F z is explained by the skin effect. 

Let us now consider the other limiting case, in 
which J1 >> l. The case v ..5 U 1 is of no particu-

lar interest, since u1 is small, and in this case the 

.image forces, proportional to (Jl-1)/ (Jl + 1), are 
of most importance. Therefore we shall assume 
that v >> U 1 . It can be shown that in this case 

P=+[1+2V,:U+4z2(- ~ e-z•Ei(z2) (7) 

z 

- v;e-z• ~ e"' 2d<X + i;_ e-z•)]. 
.0 

where U = 11 2 U is the second characteristic 2 r 1 
velocity, and Ei is an integral exponential function. 

In view of the complexity of Eq. (7), we shall 
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write out the components of the force for two li
miting cases. In the case U 1 < < v < < U 2 , 

Fy = (1 2 I c21) [1- 2 (v! U 2)'1•J, 

Fz = - (2!2 / c21) (v I U 2)'1•, 

and in the case v >> U 2 

Fy = (J2 I c21) [1- 1/ 2 V~ (U2 I v)'1•]; 

From these equations it is seen that for v"' U 2 , 

the component F y changes sign and F z changes 

from an increasing function of velocity to a de
creasing one. 

In conclusion I would like to express my grati
tude to Professor A. A. Sokolov for his attention 
to the work. 

1 A. I. Morozov, Vestn. Moscow State University (to 
be published). 

Translated by E. J. Saletan 
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D Al'vlPING theory, which is a stage beyond per
turbation theory, enables us to calculate a 

cross section u not only for long de Broglie waves 
(u <A 2 ) but also for small ¥<ave lengths (u > > A 2 ). 

Damping theory was developed in Refs. l-3 in 
the investigation of mes~m scattering by nucleons; 
Sokolov 1 established the relation 

C+C...L ~C'+C' -1 IL.J -, (l) 

k' 

which states that the sum of incident and scat
tered particles at any instant of time remains un
changed. Subsequently we applied damping theory 
to an investigation of particle scattering by a 
fixed center. 4 - 5 

It is well known that the exact formula for the 
cross section of elastic scattering of particles 
with momentum hk (k = 2rr/A. ) is 

47t' 00 

cr = k2 ~ (21 + 1) sin2 1Jz. 
z-o 

Perturbation theory enables us to determine the 
phase 1J l when 1J 1 < < 1. Damping theory gives the 

following more exact approximation for the phase 
shiftS 

co 

tg 1Jz =- 1tK \ rV (r) !~+" (kr) dr, (2) c'fL ~ ,, 
0 

(hk is the momentum and chK is the energy of the 
particle), which for 1J 1 << l becomes the expres-

sion established for the phase by perturbation 

theory. 
For the elastic scattering differential cross sec

tion , damping theory gives the following expres-

swn: 

dcr = _!_ ~ tg 1Jz tg 1J 1,\1 + tg "tlz tg 'YJr•) (21 + 1) (21' + 1) P1 (cos 6') P 1, (cos 6') 

dD.' k2 fj, (1 ·t- tg 2 'YJz) (J. + tg2 'YJ!') 

(3) 

These formulas enable us to investigate the 
scattering of spinless particles acted on by short
range forces. In particular, we made a detailed 
~tudy 5 of particle scattering by Yukawa forces. 
Vie have been able to extend our results to Dirac 
particles (i.e., with spin) only for a 8-function 
interaction. 4 

We shall now investigate particle scattering by 
damping theory when the interaction potential is 
of the form 

{B = 3V0/47ta3 , r <a, 
V(r)= · 

0 , r>a. 

Then according to {2) we have for the phase 1J l 
ka 

1tBK \ J2 d 
tg 1Jz= - c'fLk2 ) Z+'l• (y) Y Y· 

0 • 
In the one limit ka >> l scattering is practically 

determined by the s phase: 

47t f4B 2K 2aGk2j9c2'fL2 for 2BKa3kf3c1L ~ 1, 
11 = k 2 ) 1 for 2BKa3kj3c1L ~ 1, 

i.e., damping will play a decisive part only for 




