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The concept of representation distributions is introduced for quantum systems. The 
quantum generalization is found for certain relations in the theory of correlated random 
points. The general·formulas are illustrated in a concrete way for the cases of distribution 
of spin orientation. 

T l-JE statistical nature of quantum theory is mani
fested in the process of physical "measure

ment." From this it follows that the "pre-observa
tion" state of a quantum system, which exists be
fore the "measurement" and is independent of it 
(one can speak of such a state, to be understood 
in a definite sense), is a statistical state. 

In the classical theory the "pre-observation" 
state of ·a statistical system is described by distri
bution functions in a certain space (we denote this 
space by l\1). We assume that in the quantum theory 
such a "pre-observation" state is described by 
distribution functions in this same "representation" 
space M, which accordingly has a classical mean
ing. l3ut owing to the fact that a quantum "meas
urement" is more complicated than a macroscopic 
measur~ment, and is inevitably associated with an 
integral operation in therepresentation space, in 
contrast to the classical situation, negative values 
of the distribution function are possible at parti
cular points of this space. The "representation 
distributions'' of course do not give an entirely 
classical interpretation of quantum the or{, but they 
provide a basis for that interpretation o the quan
tum theory which has maximum closeness to clas
sical ideas and thus has the greatest physical-in
tuitive meaning. 

1. We define the "representation distribution" 
by the following requirements. 

1) The space in which it is defined has a clas
sical meaning, for example, phase space or the 
space of directions. 

2)The distribution can be expressed linearly in 
terms of the density matrix p • This requirement is 
directly related to the linearity oft he whole appa
ratus of quantum theory, i.e., it is connected with 
the statistical interpretation ofthe theory. The 
density matrix, like any other operator A, has as-

sociated wtih it a function in the representation 
space 

p (M) = Tr;,L (M); A (M) = Tr AL (M) (l) 

by means of the kernel L (M), which is an operator 
depending on the pointM as a parameter. 

3) The distribution must be a real function; in 
general, to a Hermitian operator there must corre
spond a real function A (M). This requirement 
amounts to the condition of Hermiticity of the 
operators L (M) for all points M. 

4) Statistical averaging of the classical functions 
A (M) must give the same results as the rule for 
averaging of operators 

~A(M)p(M)dM=TrAp. (2) 

From Eqs. (1) and (2) there follows the formula 

A =~A (M) L (M) dlv\. · (3) 

Thus the conditi0n (4) is equivalent to the require
ment that the direct and inverse transformations are 
accomplished by means of the same kernel. 

Regarding the operators A, B, . .. as elements 
of a complex Euclidean space with scalar pro
duct--the trace (A ,B )= Tr AB * (B * is the Hermit
ian adjoint to B)--we introduce an orthonormal 
basis A 1 , A 2 , ••• (Tr Ai Ai* = oii ). The kernel 

L (M) is represented by the expansion 

(4) 

L (M) = ~A~Ai (M), (Ai(M)= TrAiL (M)). 
i 

It isreadily proved that the requirement (4) is 
equivalent to the condition 

~Ai(M) A; (M)dlv\ = oii· (5) 

According to Eq. (2) the normalization condition 
Tr p = 1 takes the form 
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~ p (M) /, (M) dM = 1; (), (M) = TrL (M)). (6) 

Consequently, as the nonnalized density of the dis
tribution we must take 

w (M) = p (M) I. (M) (7) 

and the rule for averaging must he written in the 
form 

A = ~A (M) ),-1 (M) w (M) dM = A (MJ ),-1 (M). 

(8) 

The definition presented above, together with 
simple transformation principles that give the con
nection with the specific physical case, can he 
applied to derive concrete distributions. 

An important special case is the Wigner distri
bution in phase space 

( ) h-n \ ivpffi. d"v w p, q = J e pq+v!2. q-vi2 
(9) 

(n is the number of degrees of freedom), which is 
frequen~1y considered in connection with the sta
tistical interpretation_ of quantum mechanics .1 

For this case L (M) has the form 

Lx'x" = + h-n/2 ei<x'-x'JPIIi o ( q- x' t x"). (10) 

The Wigner distribution can he derived from the 
definition of the "representation" distribution by 
applying theprinciples of homogeneity and equi
valence of directions (invariance under transla
tions and reflection). 

2. Another example of a "representation" dis
tribution is the peculiar distribution in the space of 
orientations of the spin, which corresponds to the 
spin degrees of freedom. We deal first with the 
nonrelativistic case of spin s = l/2, with the spin 
variable taking two values and the corresponding 
operators being two-rowed matrices. For simpli
city we shall not at once take into account the de
pendence of the elements of these matrices on other 
variables. 

First of all we note the failure of Moyal' s at-
l 

tempt to generalize the Wigner distribution to t'J 
cases of the spin-variable type. In this case it is 
natural to take as the noncommuting operators r 
and s two components of the spin, for example 
s y and s z • Since the "possible values" of these 

operators comprise only the values s . = ± 1/2, s zh 
YJ 

= ± 1/2, the characteristic function 

~F(sYi• Szk)exp{i(-csyr + Oszk)} 
j. k 

[F (± l/2, ± 1/2) are probabilities] defined by 
Moyal must be periodic in Tand (). On theother 
hand, the function 

Tr exp {i (tsy + 6sz)} p 

is in general not periodic, and consequently these 
functions cannot be equated. 

The cause for the failure of Moyal's approach 
consists in the fact that with a discrete set of 
characteristic values of the "basis" operators 
one must not restrict the distribution to these dis
crete values only, but must include the continuous 
spectrum in the treatment. Therefore, unlike 
Moyal, we shall consider a continuous manifold 
of possible values, taken two-dimensional as be
fore. Moreover, we choose this manifold symmetri
cally with respect to the three coordinate axes. 
The direct physical meaning of the concept "spin" 
suggests that as such a manifold one should take 
the manifold on points of a sphere 

lj . "0. s x = 2 cos cp s1 n 1T, , 

or the manifold of directions of the spin, i.e., a 
manifold invariant under space rotations. Thus by 
a point M oft her epresentation space we shall 
mean a point of the sphere, so that M = (cp, () ). 

The Euclidean space of two-rowed matrices is 
four-dimensional. As basis elements we can take 
the orthonormal matrices 

A;= cr;JV2 (i = 0, 1, 2, 3), (ll) 

where a 1 , a 2 , a 3 are the Pauli matrices and a 0 

is the unit matrix. 
In consequence of Eq. (4) the choice of L is 

equivalent to the choice of the functions Ai (M). 

In order to have a representation distribution, it is 
sufficient to choose them orthonormal, real, and 
with A 0 = 0. But there will be no room left for 

multiple values if we take account of the transfor
mation principle, i.e., require that the correspond
ence of matrix to function be of a character in
variant under rotations. Using Eqs. (1), (4), and 
(ll), we have 

3 

V2p(M)=(p, cr0)A 0 (M)+ ~(p, cri)Aj(M). 
i=1 (12) 
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Taking note of the fact that p (M), like w (M) must 
be a scalar function, we examine the transformation 
properties of the terms appearing in Eq. (12). Ac
cording to the normalization condition (p, ao ) is 

an invariant; consequently, A0 (M) must also remain 

unchanged by rotations, i.e., must be constant over 
the whole sphere. Furthermore, as is well known, 
(p , a. ), like tfr* a. tfr, are the components of a 

I I 
three-dimensional vector (that it is axial is imma
terial). From this it follows that the functions 

A j (M) also transform on rotations like the com

ponents of a vector. This means that they must 
be proportional to the functions 

th (<p, &) =cos <p sin&; 
(13) 

n2 (cp, S)=sinr.psin&; n3 (cp, &)=cos&. 

Taking into account the normalization condition, 
we have 

Ao (M) = + 1 IV417; 
(14) 

A (M) = + V3J4,; n (cp, &). 

These functions satisfy all of the conditions: 
they are orthonormal and real, and A == ±A tr a /2 Yz 

== ± l/ (2 7T) Y. f- 0. With this choice the :esire~ 
functions have, according to Eqs. (4) and (7), the 
form 

L (cp, &) = + (811:)-'l'[ cr0 + V3 crn (:p, &)]; (15) 

w (cp, &) = (1 I 411:) [1 + V3 n ('?, &) tr (ap)]. (16) 

Let us consider the special case of a diagonal 
density matrix in the z-representation: 

In this case, by Eq. (16), 

w (cp, &) ==(I I 477) [I + V3 (c1 - c~) cos&]. 
(17) 

In theother special case of a "pure" state 
p == o/ lfl* we have 

w('f, &)=(114,;)[1 +V3n('f, -&)•f*:T~] 

= (1/477) [I_+ v~ sos -x], 
(18) 

where o. is the angle between the direction consi
dered and the average, most probable direction 
of the spin. ' 

3. An analogous method for the derivation of the 
representation distribution can be applied in the 
case of an arbitrary spin s . The wave function, . 
consists of a column of the 2s + 1 components V' ' 

( i == - s, ... , s ), which are the components of a 
contravariant irreducible s-tensor; the complex con
jugate quantities are the components of the co-

variant tensor. The products i* l.j;i == tP* Bii t/1 (i,j 
== - s, ... , s ) are therefore the components of a 
reducible tensor of the second rank, covariant in 
the index i and contravariant in j. Here B { de
notes the matrix with the elements 

(19) 

According to the definition of the density matrix 

its elements -i.= (Bi., p) == Bi. have the same 
P, ' ' 

transformation properties. We go over from p / 
to the set of irreducible l-tensors (l == 0, ... , 2s ). 
This is done by the formula 

- '\:1 si j 
Azm = ..,6 bzm;sjPi 

i' j 

(l = 0, ... , 2s; 
(20) 

m = -l, . .. , l). 

H b si s i . c si ere lm;sj == Pz czm;sj , lm;sj are any appro-

priate tabulated values, and p l are numbers chosen 

not only from considerations of theunitary property 
of the entire transformation (20), but also in such 
a way that the iflm form an l-tensor in the strict 

sense, i.e., transform covariantly with the spherical 
functions 

Yzm (r.p, &) 

= (- J )i\n ( (2l + 1) (l-1 m I) ')'l•piml ( &) im<;>· 
47t (L + 

1 
m I) z cos e , 

(~2P. =0; ~2p.+l = fL). 

l -* 
Then the sums 2. Yz Az (l== 0, ... , 2s) are 

m=-l m m 
scalars. The scalar function p (M), which by Eq. 
(4) is given by the expansion 

p (M) = ~ Azm (M)A;m, (21) 
l,m 

must be the sum of the scalars in question. 
From the orthonormal property of the matrices (19) 
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and the unitary nature of the transformation {20) 
there follows the orthonormal property of the basis 

Azm="L!Jt~.sjB{ (l=0, ... ,2s; .• (22) 
i,j 

m =-I, ... , l). 

Since together with this the relations (5) must be 
satisfied, the functions A lm (M) must be taken 

in the form 

Azm (M) = + Yzm (9, &), (23) 

where for a particular value of l the sign must be 
the same for all values m == -l, ... , l. Conse
quently 

2S / 

L (M) = L(+ I) L Yzm(tp, &) A;m; (24) 
1=0 Ill=-! 

(J, =+Yeo tr A~0 = + V (2s+ 1)/4r.). 

The expression (24) satisfies all of therequire
ments, since it is Herrr.itian in virtue of the rela
tions 

• lm m Ycm = Y = (-1) Yz,-m; 

A, • lm m 
lm =A = (-1) Az,-m· 

(25) 

One can convince oneself of the last of these rela
tions by obtaining 

b *si . _ (-· l )mbsj ·= bl~z; sj 
/m, SJ - /, -m; St-- S! 

-* from Eq. (20), taking account of the facts that A lm 

== ;rzm and rJt == rfj . Thus by means of £q. (24) we 

indeed obtain the representation distribution 

l 
~l 

X~ 

(26) 

s 
,l, y ( n)blm;sj i L.J lm :p, V' si Pi· 

m=-l i ,jo.,--s 

The signs +and- in Eqs. (24) and (26) are 
readily determined from thephysicalmeaning. For 
this it suffices to consider specialforms of dis
tributions, for example those having axial sym
metry, i.e., not depending on cp. 

In the particular case when s == 1, for axial sym
metry we have from the general formula 

W ('f, &) = ~ [± Yoo (Aoo• p) (27) 

+ Y 10 (Alo• p) + Y 2o (A2o· p)] 

[ V - 1 l = (1/4>-) 1 + (3/ 2)(pl- p:=l) 

X cos & ± V!o (p~ + r=!- 2pg)(3cos2&+ 1)]. 

According to the physical meaning, in thecase of 
the z-representation an increase of p i at the ex-

pense of p -_\ must lead to an increase 

of the probability of the positive 
z-orientation of the spin. Analogously, an increase 

of p ~ at the expense of p { + p : ~ must lead 

to an increase of theprobability of the equatorial 
orientation. From this we find that in both terms 
of thelast equation we musttake the sign +. For 
the "pure" state with positive z-orientation of the 
spin ( p i == 1; p g == p_-l == 0) we accordingly have 

w('f,&) = (l /4>-)[1 + (3/V2)cos& 
(28) 

+ cvro;s}(3cos2&+ l)J. 

This last formula gives a sharper maximum than 
Eq. (18). With _increase of the spin it is natural to 
expect a tendency of the corresponding expres
sions toward a 8-like distribution. 

4. Up to now we have considered the distribution 
in dynamical and spin variables separately. No 
difficulty is presented by the generalization to 
the case when the elements of thedensity matrix 
Px x'depend on both types of variables: x==(q,a) 

' 
(for conveneince we shaU use a form of writing as 
if all variables were continuous). 

As the basic operators of the extended operator 
space we may take the products A i A lm of basis 
operators of the original bases. In the space of 
representation functions theproducts Ai (p, q) 

A lm ( cp, ()) of the original basis functions will form 

an orthonormal system. The fulfillment of the 
other requirements for the extended system also 
follows from their fulfillment for the original sys
tems. Therefore the combined representation dis
tribution can be found by means of the kernel 

L (p, q; 9· &) = L1 (p, q) L2 (rp, &); 
(29) 

), = /,1)'2 = +h..-n12V(2s + l)/4>-. 
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For the same reason the same multiplicative law 
holds in thecase of N particles: 

(30) 

Here M i are the "representation" variables of the 

ith particle, for example pi ,qi, cpi' ei' and Li (Mi) 

= [ L (M.)] , . 
L Xi, X i 

The corresponding "distribution density" 

WN (Ml, ... 'MN) 
(31) 

= /,N (Ll (Ml) ... LN (MN), PN) 

can be understood in two ways. On one hand, (31) 
is the distribution in the N -fold representation 
space. On the other hand, wN (M 1 , .•• , M N ) 

can be understood as an lV-fold "distribution dens
ity" in a one-fold space, while M 1 , ..• , MN 

are different points of this space. The second 
point of view has a great advantage over the first 
in the case of an unspecified (chance) number of 
particles. 

5. In the case of a chance number of particles 
it is convenient to make use of the apparatus 
of second quantization. For simplicity we shall 
restrict ourselves as before to the nonrelativistic 
case, for which the operator wave functions satisfy 
the commutation relations 

'F (x) '¥* (x') - '¥* (x') '¥ (x) = o (x- x') (32) 

(for definiteness we shall confine ourselves to 
bosons). The state of the system is described by 
an operator for state R = M <1><1>*. The vacuum 
state operator R 0 is defined by the equations 

'¥(x)R0 --0; Ro'l"*(x)==O. (33) 

We consider the operators 

(34) 

which, using the concept of an "ordered" lV-product 
introduced by Wick, 2 , we can write 

Fr = N (Fl ... F1). (35) 

Expanding them in terms of an orthonormal basis, 

(r! s!)-'1•'¥* (x~) ... 'I( (x~) R0'¥ (xl) ... '¥ (x,) 
. ' 36) 

- ( ' ')-'1•£ ( . , , - f. S. rs X1 . .. X,, X1 ... X 8 ) 

by interchanges using Eq. (32) wefind 

co 1 
(F ) , , - '-"1 

r x1 ... x.;x1 ... x - 7 1 -k,-
' r - . 

k=O 
(37) 

x\ ... I ( Er+k)xl ... x y ... y,,. x' x'y y dyl ... dyh 
" .) r 1 .. :' 1"' r I'" k 

(Em-- Ernm). 

From this, going over to the M-representation 
and writing 

),rpr (Ml, ... , Mr) = fr (MI, ... , Mr); (38) 

J.rEr (Ml, ... , Mr) = Cr (MI, · · ·, Mr), 

we obtain 

f, (Ml, ... , M,) (39) 

The identical relation occurs in the theory of 

correlated random points,£- if by f r we understand 
the distribution functions defining the probability 

dP = fr (Mv ... , 1l1r) dM1 .•. dMr (40) 

for the occurrence of at least one particle (point) 
in each of theelementary regions (of volumes dM i) 

near the points M 1 , •• , M , and by e we under-
r r 

stand the conditional probability functions giving 
the probability of the analogous event under the 
supplementary conditions that no further point 
falls in any other place (eN= N!wN when the 

number N of particles is not a matter of chance). 
In the quantum case, to be sure, "probability" is 
not to be understood literally. But in some sense 
one can preserve the "probability" interpretation: 
in this connection the equation 
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Tr R = ~ ~! ~ ... ~ eN(M1 , ••• , MN) (41) 

X dM1 ••• dMN =I 

will play the part of the normalization condition of 
the"probability" in the summation over the whole 
set of mutually exclusive events. The operator 
function in the representation space ~ (M) = >..F 1 (M) 
is the quantum ~nalog~e of the "stochastic density func
tion" ~ 8 (M-M i ). 

I 

The generating functional is 

L [u (M)] = <fl (I + u (Mj))) (42) 

0) 1 n 

= ~ r! ~ · · · ~ f, (Ml, ... , M,) u (MI) ... u (M,) 
r-0 

XdM1 ... dM, 

and the characteristic functional of the function 
~ (M) can be regarded as the average lJ of the opera
tor functionals 

L [u] = N (e<F,V>); 6 [u] = ei(F,UJ; 

((F1U) = TrF1U = ~~(M)u(M) dM). 
(43) 

In contrast with the classical case, the function
als (43) are defined only over the c.lass of functions 
·u (M) that can he represented in the form >..- 1 TrUL 
(M) by means of the operator U. The formula r e
lating these ·functionals, 

L[u]=N(6[-iul) 
(44) 

is the quantum analogue of the formula 

L[u]=O[-iln(I+u)]. (45) 

By means of the symbol N the relations (37) and 
their inverses can he written in the form 

where M '1 , ••• , M ', is some rearrangment of the . .. 
arguments M 1 , . • • , M r and 

(46) 

If we compare Eq. (46) with the definition (36) of 
the operators E r , we can obtain the following 

expression for the vacuum state operator: 

Ro = N (e-TrF,) = L [-I]. (47) 

This result is connected with the formula of the 
theory of random points, according to which L [ -l] 
is equal to the probability that not a single point 
(particle) occurs. 

6. The operator moments ~ (M 1 ) .•• ~ (M,) 

of the operator density function ~ (M) are expres
sible in terms of the operator distribution function. 
In contrast with the classical case, all that need he 
done to obtain these formulas is to carry out the 
"ordering" of the wave functions, using l<.;q. (32). 
As the result we obtain the following formula: 

(48) 

-- "sr Q<~,>Q<~·> -LJ ~ 2 3 ••• 
s " M") '), F s (MI, ... , s 

( s = 01.:1 + 01.:2 + ... ) . 
Here the first summation l is taken over all possi
ble ways of separating r into summands, r=l v. 1 

+ 2 v. 2 + ... (v.. 1 are positive integers). In the 

second summation S the numbers u.. 1 , v..2 , ••• 

are fixed, and the sum is taken over all ways of 
distributing the arguments M 1 , ••• , M, into s 

groups (s- = v.. 1 + u..2 + ... ), there being v.. 1 groups 

with one argument, o:. 2 groups of twoargurrents, etc. The 
number of terms in the latter sum is r! / oc1 ! (I lt'oc2! (2!).~.'., 
and each term is of the form 

Qm (Ml, ... , Mm) (49) 

= l.m-2Tr (L (M 1 ).-. L (Mm)) 
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(the quantity whose trace is taken is a product in 
the sense of matrix multiplication; do not con-
fuse with the case of Eq. (30), where L 1 (M 1 ) ••• 

L N (M N) denotes an operator of a greater number 

of dimensions than L (M )] . Formulas of analogous 
structure are encountered in the theory of random 
functions andrandom points. The formulas (48) 

(for averages) go over into the formulas of the clas
sical theory if we set the quantities Q m (iVJ 1 , ••• 

M m ) equal to o-functions, 

(50) 

Although each function Q m (M 1 , ••• , Mm ) 

is cyclically symmetrical, nevertheless in the 
general case it does not possess complete sym
metry. This manifests itself in the fact that the 
operator moments (48), unlike the F are not 

r ' 
completely symmetrical. If from all themoments 
< g(M 1 ) ••. (Mr )>we form the symmetrized 
moment, according to Eq. (48) it will be equal to 

m(r)f, (M1 , • •• , M,) (51) 

XdM~ ... dM~, 
s 

where Q i t 1is the function Qi+l symmetrized in 

i arguments, and thus also fully symmetrized 
(because of the previously existing cyclic sym
metry). 

Tlie difference between the Q (M 1 M ) 
m '· • ·' m 

and o-functions is equivalent to the presence of 
specifically quantum correlations. Generally speak
ing, in the quantum case f k cannot be equal to 

every function. Thus, the function 

(52) 

= o (M1 - M*) ... o (Mk- M*), 

corresponding to a Poisson distribution concen~ 
trated in the limit at a single point, cannot be 
among the possible ones. But if as a trial pro
cedure we admit (52) and ·substitute it into (51), 
then m (r)g will be expressible in terms of 

Q i + 1 (M 1 , •.• , M*) in just the way that the mo

ments of an ordinary random function are expres
sible in terms of its correlation functions 
k(r)g (M 1 , ••• , Mr ). Consequently, instead of 

the classical formula k (r)g = o (Ml' ... , M2, M*) 

the focmula 

k(r)"f. (M1, . .. , M,) 
(53) 

Qs (M • = r+l 1• .•• , M,., M ), 

will hold, from which it follows that Q s (~1 r+l If l' • • 

M r+ 1 ) describes the effects of the quantum corre

lation of the (r + l) st order between the points 
M1 , • ·., Mr ,Mr+l. It can be maintained that 

the difference between quantum theory and classical 
theory is comprised in the difference between the 
functions Q m and o-functions. * 

If the functions a (M) = [(A ,L, (M)] /'A and b (M) 
[B ,L (M)] /'A are given in the representation 

space, then according to the rule for multiplication 
of operators one must take as theproduct ofthese 
functions in thequantum case not a (M) b (M) but 

(AB, L (M)) fl. 

The difference between this expression and the ordi
nary. product again reduces to the difference be- . 
tween Q 3 and a o-function. 

In view of the special part played by the functions 
Q m , we shall calculate them for the special cases 

considered above. For spinless Jlll'ticles, using 
the kernel (10) and taking the sign +to make it a 
definite case, we find. 

(54) 

·*The possibility of negative values of the distri
bution functions is due to this same feature. 
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In rarticular, along with the previously known 
equation 

we have 

~ = q1 q2 q3 
P1 P2 Ps 

For the spin kernel (15) (s = ~) we find 

(55) 

Q2 = (1 / 4rc) (1 + 3n1n2); (56) 

Qa = 1/4 (2rc)-'1' (1 + 3n1n2 + 3n2n3 
+ 3nan1 + 3 V3 in1 [n2na]); 

Qs 1/ (2 )-'I• ( 1. • 
a-== 4 r: + 3n1n2 + 3n2n3 + 3n3n1)· 

Equatiorrs (54) and (55) are characterized by a 
lesser degree of quantum degeneracy (correlation) 
than Eq. (56), since Q 2 , and also the reduced 

functions JQ r+ 1 dq 1 • •• dqr and fQr+ 1 dp 1 ••• 

dpr' have the "classical" form (are equal to a
functions), which is not true of the functions with 
spin. 
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The Fokker-Planck equation for a many-component plasma is derived by the method 
of N. N. Bogoliubov, and the coefficients are calculated in explicit form. 

T HE Fokker-Planck equation is usually derived 
from Smoluchowski's equation for stochastic 

processes, 1 and thus the dependence of the coeff
icients in the Fokker-Planck equation on the law 
of interaction between the particles is left undeter
mined. For a plasma the Fokker-Planck equation 
can he obtained from a known kinetic equation of a 
form given by Landau. 2 In this case divergences 
appear for large and small distances, owing to the 
long-range nature of the Coulomb forces, so that in 
Rei. 2 the integrals are cut off at the limits of small 
and large distances. 

The method of Bogoliuhov3 makes it possible to 
derive the Fokker-Planck equation on the basis of the 
mechanics of an assembly of molecules and to cal
culate the coefficients in explicit form for a given 

interaction law. In the case of a plasma the diver
gence of the Fokker-Planck coefficients at large 
distances is disposed of by cutting off at the Dehye 
radius, which is not introduced from outside, as in 
Ref. 2, hut follows automatically from Bogoliuhov's 
method. In the present paper we give a derivation of 
the Fokker-Planck equation for amany-component 
plasma with uniform spatial distribution, and study 
the asymftotic cases of the behavior of plasma par
ticles at arge and small energies of motion. 

We consider the plasrm in a state of statistical 
equilibrium and investigate the behavior of a certain 
individual particle belonging to the plasma ( or a 
foreign charged particle projected into theplasma). 
In the derivation of the equation for the distribution 
.function of such a particle we assume that its in-
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