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An explanation is given of "temperature hysteresis" which accompanies phase 
transitions. The temperature dependence of the dielectric constant in the vicinity of 
phase transition points has been found. Expressions are found for the coefficients in
volved in the thermodynamic theory; these are determined in terms of easily measured 
quantities. The relaxation time has been estimated, 

INTRODUCTION 

T. HE. thermodynamic theory of piezoelectric phe
nomena in bariunt titnate l-7 is built on a con

sideration of the thermodynamic potential (or the 
free energy), and on a search for those conditions 
under which it takes on minimum values. In this 
way the presence of four different phases has been 
established and the transition conditions from one 
phase to another have been made clear. Here it bas 
been assumed that the transition from one phase to 
another takes place at that temperature for which the 
value of the thermodynamic potential becomes identi
cal for both phases under consideration. In essence, 
this approach implies a neglect of metastable states, 
which are characterized by a relative, and not an 
absolute,minintum of the thermodynamic potential. 
It is known that in a nuntber of cases, the relaxation 
time is so large that the metastable states are prac
tically stable. Neglect of the metastable states 
allows us to make clearthe chief features of the 
phenomenon, but it does not allow a satisfactory 
look at a number of details, including hysteresis 
phenomena and the piezoelectric properties close 
to the transition point. 

In order to carry out such an analysis, we must 
(in addition to a consideration of the metastable 
states) make a definite hypothesis on the tempera
ture dependence of the coefficients in the well
known expression of the thermodynamic potential 

<I> = <Do+ aP~ + 1 /2~1P 4 + ~2 (P~P~ (l) 

+P;P; + P;P';) + 1/311P6 

+ '12 [P~ (P} + P;) + P~, (P; + P~) 

+ P~ (P~ + P;)] + '(3 P';P;P;. 

In the case of a second order phase transition, we 
can regard (1) as an expansion in a power series P. 
It is evident that not only a. but also f3 1 , {3 2 , y 1 , 

Y2 , Y3 are in this case functions of thetempera

ture and pressure .. In the case of a first order 

phase transition, it is no longer possible to regard 
Eq. (l) as an expansion in a series, but only as 
a more or less successful approximation. It is 
evident that in this case also, there is no basis 
for considering the quantities {3 1 , f3 2 , y 1, Y 2 , Y 3 

as constants. Moreover, the fact of the temperature 
dependence of these coefficients is immediately 
evident from the independence of P (as observed ex
perintentally) of temperature in the orthorhombic 
and rhombic phases.* While, in the literature (for 
exarnple, Refs. 2,3, 8), all the enurrerated coeff
icients are regarded as constant. In the present 
research, the folJowing approximation is used: the 
quantities y 1 , y 2 , y 3 are considered constant, but 

the quantities a. 1 f3 1 , f3 2 are considered as linear 

functions of the temperature. This approximation 
permits an explanation of the order of the phase 
changes observed experimentally, andreduces to a 
series of relations which are easily tested experi
mentally. 

Unfortunately there is a lack in the literature 
today of data on a sufficiently complete investi
gation (if only of a single specimen) which in
cludes the temperature dependence of the polariza
tion and the dielectric constant in both phases, 
on the consideration of temperature hysteresis, 
heat capacity, elastic modulus and piezomodulus. 
Such a complete investigation would permit a 
quantitative comparison of theory with experiment, 
which would he the more desirable in that the theory 
of other piezoelectrics with "perovskite" structure 
ought to be built in analogy with the theory of barium 
titanate. 

; Actually, in the orthorhombic phase, for example, 
P is given by the relation4 

F2= [2 Y1 + 3/2 y2)-l [-i:lr---1/2[32) 

,r--------'----------- ] 
+r (f3r+ 1M;2f- !Ja&(Yr + 3i4Y2) • 

For a. increasing linearly with the temperature, a~d for 
constant P 2 increases monotonically upon a decrease in 
temperature, and does not remain constant. (For details, 
see Sec. 2). 
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l. CONDITIONS FOR lliE ST ABIUTY (METAS
T ABIUTY) OF THE DIFFERENf PHASES 

AND THEIR INTERPRETATIO~ 

As is well known, the thermodynamic potential 
(l) has extrema for the values P x, P y, p z which 

correspond to I) nonpiezoelectric (cubic), II) tetra
gonal, III) orthorhombic; IV) rhombic phases,* 
where the equations that are satsfied by nonzero 
components, their solutions, and the conditions 
that the extrema he minima, have the forms:4 

Phase I Px=Py=Pz=O, r~.>O. (2) 

Phase II ilP4 +~1P2 -J-rt.=0, (P=Pz or Px or Py), (3) 

p2 = [- Pl + llf3i-4oqd/211• (4) 

Pl + 2-rlP2 > 0. (5) 
Pz + '[2P2 > 0, (6) 

Phase III (TI + a/4 12) p4 -t- (PI + 1/2 ~2) p2 + rt. = 0, (7) 

pz = 1/2 ("(I+% izt1 [-(PI+ 1/2 Pz) + V(PI + 1/2 P2)2 - 4a (·;1 + 3/412)]. (8) 

( P~. = P~, P z = 0 or similar solutions), 

(2[31 + Pz) + (411 + 3rz) pz > 0, (9) 
2f3z+(I3-I2)P2 >0, (10) 
?z+12P2 <0. (11) 

Phase IV (rl+%1z+l/9I3)P4+(Pl+2/af3z)P2+r~.=0, (12) 
P 2 = 1M11 + %Tz + 1/9l3t1 

x [-(r~+%f3z)+ V(rl+%f3z)2-4x(rl+ 2/3'&2+! 13)]. (13) 

(P; = P~ = P;), 
(PI + 2/3Pz) +2(11+%1z+ 119Ta)P2 >0, (14) 

3[32 + j 3P2 < 0 ** (15) 

In order to give graphic meaning to these gener
al conditions, which char.acterize the minimum of 
<I> relative to an arbitrarily small deviation from 
the equilibrium position, let us consider some 
concrete deviations. With this aim, we set P z = 0 

and introduce polar coordinates in the plane P x•p y· 

Substituting P y = P cos cp P x = P sin cp in Eq. 

(l), we get 

<I>= <Do+ aPZ + lh f31P4 + 1/a lips (16) 

The extrema (16) are found from the equations 

a <1>/ ap= 0, a Cf>/a cp =0, which have the solutions 
I) P = o, II), P f,. 0, cp =0, III) P=l o, cp =n/4, 
which evidently correspond to phases I, II, III. 
Calculating the second derivatives of <I> we find 
that the solutions II ( <p =0) correspond to a minimum 
for 

and the solutions III for 

P2 + T2P2 < 0, a+ 3f31P2 + 5·rlP4 

These conditions, by virtue of Eqs. (3) and (7), 
coincide with the conditions (9) and (11), which can 
then he interpreted as the cond~tions for a mini
mum in <I> relative to the value of the vector P and 
the angle Cfl 

In order to interpret the inequalities (10), (.14) 
and (15), let us consider small departures from 
equilibrium of another type. To he precise, we 
set 

*For brevity, we shall call these phases I,II,III,IV. 

**Another minimum condition is given in Ref. 4 for 
the phase IV; however, it appears ·as a consequence of 
Eqs. (14) and (15). 
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Px=PcosO; Py=Pz=2-'1•Pdn0, 

which correspond to the position of the vector P in 
the plane v.hich passes through the x axis and the 
diagonal of the yz plane. In this case, Eq. (l) 
has the form 

Investigation of this equation leads to the f ollov.
ing result. The extrema of <P occur, for II), at 
() = 0, for III) at e=rr/2, and for IV) at tan ()=2. 
These correspond to the phases II, III, IV. The 
necessary conditions that these extrema be minimal 
are the satisfaction of the conditions <P cpp > 0, 

<Pcp:p > 0. The first of these, which is applicable to 
solutions of II and III, as should he expected, again 
reduce to the equations (5) and (9), while that 

applicable to the solution of IV reduces to the in
equality (14). The second requirement gives, for 
the solution of II: {3 2 +cpcp2 P 2 > 0. for the solution 

of III): 2{3 2 + (y 3 - y 2 ) p 2 > 0, and for the solu

tion of IV): 3{3 2 +y3 p2 >0. 

Summing up the results we can say that the condi
tions for a minimum of <P for each of the phases II, 
Ill, IV consist of a single inequality, which ex
presses the minimum in the quantity P and v.h ich 
contains coefficients both for the isotropic and for 
the anisotropic terms of <P, and of one or two in
equalities which express the minimum in terms of 
angles and which contain only the coefficients 
for the anisotropic terms. 

2. TEMPERATURE HYSTERESIS 

If we consider that the metastable states are 
states of virtual equilibrium, which is evidently 
valid for BaTiO 3 , the state of the crystal (in the 
sense of the attachment of it to a certain phase 
which we denote as phase A) remains unknown so 
long as this relative minimum of the thermodynamic 
potential (to which phase A corresponds) does not 
disappear. Only after this does the transition to 
another phase B take place. We denote the tempera
lure, at which this occurs, by TAB , The reverse 

transition from ph!}se l3 to phase A takes plaee at 
the same temperature T BA· at which phase B loses 

stability (it ceases to correspond to a mnlimum). 
The temperature TB A , generally speaking, does not 

coincide with TAB , which indicates the presence 

of temperature hysteresis. 
For a concrete consideration of temperature hys

teresis, it is first of all necessary to establish 
the temperature dependence of {3 1 and {3 2 • Within 

the framework of the chosen approximation ({3 1 

and {3 2 are linear functions of temperature; Y1.y2 

y 3 are constants)the prohlemreduces to the sign 

and value ofthe derivatives (of3./aT)p = {3 1 and 
(o{3 2 I aT)P = {3 2 • To find the~e quantities, it is 

convenient to make use of the fact that, as experi
ment shows, 9 p ru and p 1v are practically inde-

pendent of temperature.* Differentiating Eqs. (7), 
(12) with respect to temperature, v.e have for 
aP 2 1ar = o: 

(18) 

where P 2 and P 2 are the values of Pin the phases 
III IV 

III and IV, and CJ. =(a a./ aT) . We find from Eq. 
p 

(18) 

• • 2 2 
~~ = (/.. (3 / P1v- 4/ Pm), (19) 

In accord with the experimental data, 10 P1v> P 111 

and prJ-put < < p II~ . It therefore follows 

that ~ 1 < 0 and ~ 2 > 0 and is small in comparison 

with {3 1 • Thus {3 1 falls off rapidly, while {3 2 

increases slowly with increase in temperature. 
Furthermore, it is not difficult to establish that 

Y 2- < 0** Inasmuch as the regions of stability of 

*Tiie independence of P o£ T in phases III and IV 
probably has an accidental character and cannot be 
observed in other piezoelect,rics of the type of BaTiO 3, 

However, we carr also· find {3 1 and ~2 without making 
use of this independence. 

**As a consequence of the uncertainty of the experi
mental data, the opposite assumption has been made in 
Ref. 4. · 
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phases II and III overlap (temperature hysteresis), 
conditions (6) and (11) are simultaneously satisfied 
in the region of overlap, for any temperature. Then, 
by virtue of the fact that P 1r < P frr 10 , it is 

true that y 2 < 0. 

Assembling this information on the coefficients 
{3 1 , /3 2,y 2 , it is easy to determine which of the 
conditions (5), (6) limits the region of existence of 
phase II on the high temperature side. This cannot 
be Eq. (6), since if y 2 P 1~ + {3 2 (T 21 )=0 held at 

the temperature T 21 , then , for much lower tempera-

tures T < T 21 , it would be necessary that 

Y 2 P ~l + {3 2 < 0, and phase II could not exist. Con

sequently, the transition from phase II to phase I 
proceeds at the temperature T 2 1 which satisfies the 

condition 2y 1 P 4 + f3 2 P 2 = 0. The reverse transi

tion from phase I to phase II proceeds at a tern
perature T 12 which is determined by the condition 

ex. = 0, since for ex. < 0, P = 0 corresponds to 
maximum ¢. 

Let us proceed to the transition between phases 
II and III. We first note that condition (9), which 
is, by Eq. (8), equivalent to 

[(~1 + 1/2 ~2) 2 - 4oc (·11 +% j2)J'1' > 0, 

is automatically satisfied if ex. < 0.* Consequent
ly, the region of stability of phase III is determined 
by the conditions (10), (ll). Let the crystal be in 
phase II and let us carry out a decrease in thetern
perature. Initially, Eq. (~'?,) is satisfied. With a 
decrease in the temperature, f3 2 decreases and at 

temperature T 23 [determined from y 2 Pd + f3 2(T 23 ) 

= 0] phase II loses stability. A transition to 
phase III occurs. Inasmuch as P rlr > p rl , condi-

tion (11) will be satisfied at the temperature T 23 . 

~e now trace the reverse transition from phase III 
to phase II. It takes place at the temperature T 32 
> T 2 3 , determined by the condition y 2 p 2 + 

III 

f3 2 ( T 3 2 ) = 0. At this temperature, phase III 

loses its stability, since condition (6) will be 
satisfied. 

Now let us consider transitions between phases 

*Condition (9), as was pointed out in Ref. 4, only de
termines the choice of the sign in front of the square 
root in the solution of (7) • So far as the sign of 
(y 1 + 3/4 Y2 ) is concerned, this quantity is positive, 4 

III and IV. Here the coefficient y 3 plays an essen

tial role. For the interpretation of the transitions 
considered, we must regard y 3 as negative (with 

the subordinate condition y 1 + 2/3 y 2 + 1/9 y 3 >04). 

Let the crystal be in phase III and the tempera
ture be lowered. Further, let the condition 

(20) 

hold, along with condition (11). Condition (10) then 
follows from (ll) and (20). For a lowered tempera
ture, f3 2 decreases and at the temperature T 3 4 , 

which satisfies the condition 3 {3 2 + y 2 P1rr 
= f3 2 + Y 2 P 1rr < 0 or 2{3 2 (T 3 4 ) + (y 3- Y 2) P fu 
= 0, phase III loses its stability and the crystal 
undergoes a transition to phase IV, the stability 
condition for which [ Eq. (15)] is of course satsi-
fied since T < T 3 . The reverse transition 

4 3 4 

from phase IV to phase III takes place at a tem
perature T 43 < T 34 , at which the quantity 

3{3 2 + y 3 P l~ vanishes and, consequently, phase 

IV loses its stability. It is easy to see that the 
conditions for the stability of phase III are satis
fied at temperature T 43 . Condition (14) for 

ex.<, 0, Yr + 2/3y 2 + 1/9y3 > 0 4 is also satis

fied automatically. 
In the picture drawn here of the phase transitions, 

it is clear that the sequence of phase changes de
pends sensitively on the size of the coefficients; 
therefore we can expect that other piezoelectrics 
of the BaTiO 3 type can be found with another se-

quence of phases or with the absence of some of 
them. 

Operating on the above basis, it is not difficult 
to calculate the width of the regions of tempera
ture hysteresis. 

Region T 21 - T 12 ::(M'}21 • It is easily seen that in the 
case of a second order phase transition, hysteresis 
is absent, as would be expected.* In the case of 
.a first order transition, 

*Phase II loses its stability at a temperature T 21 
determined from 2y, P 4 + {3 1 p 2 = 0 or, by virtue of Eq. 
(3), from {3 1 P;1 + 2 ex. = 0. Since, for a second order 
phase transition, P tends to zero at the ransition 
point, the latter condition means that ex. (T 21 ) = 0, 

i.e., that T 21 = T 12 . 



PHASE PHENOMENA IN BARIUM TITANATE 851 

(21) 

By taking Eq. (4) into account, the latter equation 
can be written in the form 

Substituting (~T )21 ex. for ex. (T 21 ), we get 

(23) 

Region T 32 - T 23 =(L\T) 32 . The temperatures 

T 23 and T 32 are determined by the equations 

(24) 

Heplacing {3 2 (T 32 ) by f3 2 (T 23 ) + f3 2 (L\Th2 , 

we findfrom these equations, 

(25) 

Region T43 - T 34 =(L\T)43 . Here thetempera

tures T 34 and T 43 are determined by the equations 

(26) 

:32 (T43) + '(3Pfv = 0. 

Settingf32 (1'43) ={32 (7'34) +(L\T)43 P2, we find 

To conclude this Section, we note that £qs. (23), 
(25), (27) are approximately true even if the de
pendence of the coefficients [3 1 and {3 2 on the 

temperature is more complicated than is assumed in 
this work. 

3. BEHAVIOR OF THE DIELECTRIC CONSTANT 
NEAR TilE POINTS OF PHASE TRANSITIONS 

Having Eqs. (21), (24), (26) forthe temperatures 
of the phase transitions, nnd making use of the 
general expressions forthe dielectric constant in 
each of the phases [that were obtained in He f. 4] , 
we can make explicit the temperature dependence 
of the dielectric constant near the transition 
points. 

Boundaries of phases I, ll. Here we need to dis
tinguish between the cases of phase transitions of 
the first and second kind. In the latter case the 
well known "pair law" holds. 1 \\e pause only on 
the first order phase transition. Near T 12 , for 

T >T 12 ,wehave 

If the crystal is in phase II near (T < T 21 ) we 

have 

where T 21 satisfies E:q. (21). From Eqs. (4) 

and (21) it follows that 

Making use of these expressions, and limiting 
ourselves to terms of lowest order, we obtain the 
small quantity 

+ 4rx·iiJ'I' (T- T 2I)'!•. 

From Eqs. (29)-(30) we get 

8 il = c21 I (T 21- T)'l•, whereC21 (31) 

El. has no singularity at T = T 21 . 

Boundaries of phases ll and Ill. The tempera
ture T 2 3 is determined from Eq. (24). It is evi

dent trom (29) that E II has no singularity at this 
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temperature, whereas ll obeys the Curie-Weiss 
law. Actually, expanding the denominator of Eq. 
(29) in powers ofT -T 23 and considering that P 2 

changes slowly in the neighborhood of T 23 (so_ 

that we can neglect the terms dP 2 / dT), we get* 

(32) 

C2a = (- 2;:·rzl~2~2)r-r,,. 

The temperature T 3 2 is obtained foom Eq. (24). 

In phase Ill, if we choose the coordinate axes so 

that P x = 0, P y2 = P / , the following components 

are different from zero: 

Eilt: Sxx• Syy = Szz H Syz = Ezy· 

They are expressed by the equations (3), (7) from 
the work of He£. 4. It is immediately clear from 
these equations that the component £ xx has no 

singularity at the temperature T 3 2 , while there

maining non-zero components obey the Curie-Weiss 
law. Because of insufficient space, we shall not 
deduce the expressions for the corresponding con
stants, and limit ourselves only to a consideration 

of the principal values of the tensor£ ik • These 

will be the components o;' , s' , s' , 
XX YY zz 

where the axes z ', x ', y' are directed respectively 
along the vector P, the original x-axis and the 
direction perpendicular to the first two. 

The components E'xx 'E'yy 'E'zz have the form:4 

(33) 

E~y = - 2;: I (22P2 + l2P4); 

s~z =- 2;: I (4oc + (2~1 + ~2) P 2). 

It is evident from these formulas that the longi
tudinal component £ 'z z and the one of the trans-

verse components (E'xx ), which corresponds to 

the direction of the crystallographic axis of a 
fourth order cubic crystal, have no singularities 

*In order to obtain the more accurate expression for 
c 23 , we must consider that 

dP2fdT =- (~ ,?2 + 0() i (2y1P 2 -1- f!.1),. 

which is obtained upon differentiation of Eq. (3} with 
respect to the temperature. 

at the transition point. Conversely, the trans-
verse component £ 'yy , which corresponds to the 

direction of the diagonal of the cubic crystal, obeys 
the Curie-Weiss law. 

Hepeating the calculations used in deriving Eq. 
(32), we obtain for T close to T 3 2 (T < T 3 2 ), 

(34) 

C32 = (- 2;:-;d~2?2)T=r ••. 

Boundaries of regions Ill and IV. The tempera
tures T 34 and 1'43 are determined by Eqs. (26). 

Let the crystal be in phase III and T close to T 3 4 
(T <, T 34 ). As is evident frorr. Eq. (2. 7), 4 the 

components fyy = £ z z and fy z = £ zy have no singu

larities at thepoint T 32 . However, the component 

Exy = £ 'xx follows the Curie-Weiss law. Close to 

T 34 , the denminator of !he first of Eqs. (33) can 
be written in the form 2{3 2 P1~ 1 (T- T 34 ), and 

consequently, 

En= <x = c34 I (T- T34); (35) 

c34 = 4;: I ~2Pru = - 4;: ("13- ·;2) I 2112 ~:l· 

The remaining components E'yy and E'zz have 

no singularities for T = T 34 . Thus, even in the 

case of a transition to the second phase, one oft he 
transverse dielectric constants tends to infinity, 
but not that one which has a singularity at the 
point T 32 . 

Now let the crystal he in phase IV, close to the 
point T 43 (T < T 43 ). As is evident froru Eq. (3.8) 

of Hef. 4, all the components £ik in this case 

(Exx = fyy= Ezz and Exy = Eyz = Ezx) satisfy the 
Curie-Weiss law. Not computing the corresponding 
constants, we return to the principal values. They 
are expressed by the equations* 

:;~z = - 3;: I [Goc + (3,'31 + 222) p2J; (36) 
I ' 

2 = ::: = - 3- I (B + 1 I .. P2) p~ 
XX yy "' & 2 /363 ... 

It follows from these equations that the longitu
dinal component f,zz has no singula,rity for 

*As the z '-axis, we chose the direction of the vector 
P, and for x', y', any mutually perpencicular directions 
that are also perpendicularto P. 
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T = T 4 3 , but the transverse components f 'xx 

f' = fl obey the Curie-Weiss law: 
yy -

(37) 

Are the temperature dependences obtained here 
validated by experiment? Unfortunately, it is dif
ficult to give a complete answer to this question 
in the absence of accurate measurements. 

4. EXPRESSION OF THE CONSTANTS IN TERMS 
OF EASILY MEASURABLE QUANTITIES 

The problem ofthe experimentaldetermination 
of the constants on which the theory is constructed 
is undoubtedly of practical interest. In Hef. 4 for
mulas were proposed for the calculation of the 
theoretical coefficients. However, in the first 
place, these formulas contain quantities whose ac
curate measurement is very difficult, and, in the 
second place, which is more important, these for
mulas were introduced without consideration of 
metastable states. It is appropriate therefore to 
turn our attention to the problem of the coefficients. 

The quantities which we need tofind are, first, 
the constants y 1 , y 2 , y 3 • Further, as a conse-

quence of the assumed linear dependence for each 
of the quantities 01., f3 1 , f3 2 , it suffices to point 

out one value for some temperature and the value 
of the derivative at that temperature. 

Finding of o: . Inasmuch as one value of 01. 

is known from a (T 12 ) = 0, we need only to find 

This quantity has repeatedly been found from the 
temperature dependence of f in phase I: 

(38) 

Finding of y , f3 (T ) f3. Here we need to 
1 1 21• 1" 

distinguish the cases of phase transitions of first 
and second order. Let the transition between the 
phases I and II be of second order. Then we can 
find !3.1 (T 21 ) from the initial slope of the curve 

P (T) in phase II. From p2 =- 01./{3 ,1 near 

T = T 12 , it follows that 

:11=- ~ i (dP 2/ dT) 1·-r I I - 21• 

(39) 

The value of {3 1 was found in Sec. 2. The value 

of y 1 can be found from Eq. (3): 

'Tl = - x (T) p-4 - ~1 (T21) p-2 
(40) 

- ~·1 p-2 (T- T21), 

where T is an arbitrary temperature T 21 < T < T 23 , 

and P is the corresponding polarization. 
In the case of a first order phase transition, 

Eq. (39) does not occur. To find the desired 
quantities, we have 

(~1 (T21)]2 = 4"!11X (T2d, (P 2)r .. 

= -~r(T21)/2"(1; 1X(T21) = (f1T)21;_· 

From these equations, we find that 

o (T '- 2 (L.\Tb&. 
PI 21} - - (P2) r,, 

(41) 

Finding of f3 2 (T 32 ) and y 2 • Solving the se

cond of l::qs. (24) and (7), we obtain 

~2 (T 82) = 4Ptn (IX (T 32) / Ptll 

+ ~1 (Ta2) / Pfu + "(1], 

. 

(42) 

Finding of f3 2 • The qunntity f3 2 was found in 

Sec. 2. For a control, and in the vanishing of 
the small distance~ Plv - P frr entering in Eq. 

(19), we can find {3 2 (1' 23 ) from the first Eq. (24) . 
and compute f3 2 fron' 

Finding of Y 3 • We have, from Eq. (26), 

"13 =- PI.J ~z (T43) (44) 
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In addition to the expressions obtained forthe 
coefficientscx.,f:3 1. {:3 2. y 1, y 2. y 3 , it is evidently 

possible to put together many others to which, in 
the case of sufficiency of the af1Proximation 
assumed, we can give approximate values. 

5. LATENT HEAT. HEAT CAPACITY. ADIA
BATIC DIELECTRIC CONSTANT 

Based on the derived temperature dependence of 
the coefficients, it is not difficult to write down 
the expressions for the latent heat and the heat 
capacity. If we limit ourselves to phase transi
tions between the first and second phases, we 
have for thelatent heat 

[here it is taken into account that for thernJodyna
rr,ic equilibrium, (o¢/op) = O]. In the case of a 
second order phase transition, ,\ 12 = 0. 

The first order transition from phase I to phase II 
occurs at a temperature T 12 , we should therefore 

substitute P11 (T 12 ) = -{:3 1 (T 12)jy1 in Eq. (45). 

For the reverse transition from phase II to phase I, 
E:q. (45) must be written in the form 1.. 21 = 

= T ( ;_ p2 + 1/2 ~ 1 p4 ), where now p2 =P[1 21 
x(T21 )=-{31 CT21 )/2Y1· 

For determining the heat capacity, we have 

(Cp)u - (Cp)I = - T [(~~)u - (~~)J (46) 

· · dP 2 

=- T (ex+ ~P2) dT ' 

where, in accord with Eq. (4), p 2 is expressed by 

the formula 

In the case of a second order phase transition, the 
transition point is determined from ex. = 0, where 
f3 1 > 0, and the square root entering into Eq. (47) 

must be set equal to + {:3 1 at the transition point. 

We then obtain the usual expression 

(48) 

from E~qs. (46), (47). 
In the case of a first order transition, (3 1 < 0 

and the heat capacities at the two transition points 
T 12 and T 21 are equal. For T = T 12 , the square 

root entering inoo Eq. (53) is equal to - {3 1 and 

(c ) 'C ) T12 ( • g· ~~ T1o)\2 
p II-\ p I = - ~~(T12) ex-; 1 ~) • (49). 

ForT= T 21 , dP2 / dT, and consequently (CP)II 

also, go to infinity. Near R 21 , for T < T 2 1 , we 

get from Eqs. (30), (46), (47), 

(50) 

\Ve no\\ turn to the calculation of the adiabatic 
dielectric constant. It is essential for the following 
reason. The measurements of the initial dielectric 
constant are usually carried out on a variable 
current of sonic frequency. Inasmuch as therwal ex
change at these frequencies is practically negligi
ble, we can considerthat the measured values of E 

are closer to the adiabatic than to the isothermal die
lectric constants. 

The connection between the adiabatic and the 
isothermal dielectric constants is given by the ex
pression 

(51) 

where cp is the heat capacity at constant polari

zation, and C E is the heat capacity at constant 
field. Applying Eq. (51) to the case of a transition 
between phases I and II, and using Eq. (46) [where 
now we write (Cp )11 = CE ; (Cp )1= Cp J, we can 

obtain the following equations: 
for a second order phase transition, 

es =ere pI (C p + Tl2;.21~1 (Tl2)); (52) 

for a first order phase transition, close to T 12 , 

e5 =erCP/[CP (53) 

- (TI2 I ~1 (T12)) (;- ~1~1 (1'12) lr)2J. 
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Near the point T 2 1 , 

(54) 

X(4~y - 2r< r~ )3'• 
1 t'1t'1 T=T .. ' 

Substituting <r [from Eq. (31)] in Eq. (54) we 
find 

ss = (16C1r 1 ;'T 3 (T )) 
' l 2l' 1 21 (55) 

X { 4;~ - 23 r3. )-:-2 . 
\ II • lt-'1 I = l 21 • 

Thus <s , in contrast to <r , has no singularities 

at the point T 21 . 

In view of the fact that P is almost independent 
of temperature near the points of transition he
tween phases II and III, and III and IV, the differ

ence between < s and <r here is not large. 

6. ESTIMATE OF THE RELAXATION TIME 

In the theory outlined above, it was assumed that 
the transition from one phase to another occurs 
only when the first phase loses stability. 

Such an assumption amounts to a neglect of 
fluctuations. The system can be found for a suita
bly long time in the metastable state and, conse
quently, the relaxation time will he infinite. 

In order to correct the validity of such a consi
deration, it is necessary to estimate the relaxation 
time T. We limit ourselves to an estimate of for 
the transition from phase I to phase II. The thern,o-• 
dynamic potential for this case can he written in 
the form 

The dependence of <I> (P) for 0 <a< 3[-l~/16 ll 
has the form* sketched in the Figure, where P 2 

and P 1 are the values of P • corresponding to the 

mininmrn and n:aximum, equal to 

352 7 
*For O< a.< _' 1_ , phase I is metastable. 

1Gy1 

where, close to ex. = 0, 

Let the crystal be found in phase I (P= 0) and 
let the temperature decrease. In this case the height 
of the harrier separating the minimum corresponding 
to the values P = 0 and P = P 2 decreases. Neg-

lecting fluctuations, we should expect that the 
transition from phase I to phase II takes place at 
that temperature T 12 for which this harrier disap

pears, i.e., when 

<IJ (0) -- <IJ (!\) === 0. (58) 

Then, substituting P 1 from Lq. (57), and solving the 

the resultant equation for ex., we find ex. (T 12 ) = 0 

in accord with Sec. 2. 
Taking into consideration the fluctuations, it 

should be observed that the phase transition I -->II 
takes place for ex.> 0 also, but satisfies the 
condition 

where the relaxation time '"depends on ex.. For an 
estimate of T( ex.), we assume that the phase transi
tion in each specimen is guaranteed upon the for
mation of a nucleus of phase II in a small n.acro
scopic volume~ v. For the probability of forma
tion of such a nucleus, we must consider the pro
bability of the origin in the volume ~ v of a polari
zation which exceeds the "harrier" value P 1 • The 

latter proahhility is equal to 11 

q=C ~exp{-[<P(P)-<P(O)]~vjkT}dP. (59) 
P, 

In view of the fact that large fluctuations do not 
n.ake significant contribution to the integral in 
(59), we can limit ourselves to the square term in 
<I> (P), and determine C from the normalization con
dition 

C ~ e-"P'J3.v1kr dP = 1. 

0 

(60). 

We further assume that the fluctuations are re
corded at the moments ~ t, 2~t, 3~t, ... , where 
~t is so chosen that, on the one hand, it is small 
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enough that in a time !'!.t there takes place only a 
small number of fluctuations, and, on the other 
hand, large enough that the recorded fluctuations 
can he regarded as statistically independent. 

0 p 
I 

fl 

We introduce the probability p that in the time 

interval !'!.t, in the volume !'!. v, there does not take 
place a fluctuation exceeding the "harrier" value 
P . We can regard the quantity q in Eq. (59) as 

1 

a fraction of theinterval l'!.t during which the sys
tem is in microstates corresponding to P > P 1 

(in the volume !'!. v ), and {1-q) as the fraction of 
this interval whic~ corresponds toP < P 1 • 

Therefore, we can take for the probability p=1-q. 
Then we can estimate the mean relaxation time 
in the following way: 

Actually, pq is the probability that the value P 1 

is achieved at the instant t lying between l'!.t and 
2 l'!.t ; p 2 q is the probability that it occurs at a 

time lying between 2 !'!.t and 3 !'!.t, etc. Summing 
the right side of Eq. (61),* we get 

(62) 

*For this we must write Eq. (61) in the form 

T = q!lf(p + p2+ ... ) + q!1t(p2 + p3 + ... ) i- ... , 

sum the series in parantheses and the series obtained 
from a summation of the paranthetical expressions. 

In order to establish the dependence of Ton the 
parameters oft he system, let us find p from Eqs. 
(59), (60): 

x. 

p = V2 I"~ e-x2 f2dx, 
0 

(63) 

For an estimate of x 1 , we take!'!. v""' 10-4 and 

take the values 

~~ ~ 3-IQ-13 

from Hef. 8 (all quantities in the cgs. system). 
Then we get 

We can simplify Eq. (63) for large values of x 1 

by making use of the asymptotic value of the in
tegral in it 12 

p ~I- V21-.-: e-X:t2 I x1 • 

From Eqs. (62) and (64), we get 

(64) 

(65) 

There remains in Eq. (65) theundetermined quan
tity !'!. t , equal (in order of magnitude) to the mean 
time interval between two successive fluctuations. 
An estimate of l'!.t without a detailed knowledge 
of the fluctuation mechanism is very difficult. For-

tunately, the strucuure of Eq. (65) is such that any 
accurate estimate of l'!.t is unnecessary in practice. 
Inasmuch as the fluctuations oft he quantity P are 
detern,ined by the thermal motion of the atoms of the 
crystal, we can estimate the minimum value of !'!.t 
by assuming 

We further set T- T 12 = w-a degrees, which cor

responds to x 1 ""' 105. We then get from Eq .. (65) 

It is clear that the order of 

magnitude of Twould not he changed for any other 
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assumptions on the value of~ t . 

Thus, even at a temperature very close to T 12 

(from the viewpoint of experimental possibilities), 
the relaxation time can be considered as practically 
infinitely large, which supports the basic assump
tion made in the research. 

In conclusion, I am pleased to thank V. L. 
Ginzburg for supervising the research and for sev
eral suggestions made during the final editing. 
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The Method of ::=nvelopes for Investigating Free 
Osci I lations in Accelerators* 
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P. N. Lebedev Physical Institute, Academy of Sciences, USSR 
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]. Exptl. Theoret. Phys.(U.S.S.R.) 31,993-1001(December,1956) 

\Ve present a derivation of the equation for free oscillations in accelerators with an 
arbitrary magnetic field having a plane of symmetry. To solve the bas~c problems of the 
theory of free oscillations, which arise in the design of accelerators, an envelope method 
has been developed in which the study of individual orbits is replaced by consideration 
of the envelope of the trajectory of the particles over a large number of revolutions. The 
application of the method is illustrated for accelerators with a sector magnet and for strong
focusing accelerators. 

l. INTHODUCTION 

I N cyclic accelerators, the displacement of a par
ticle from sorr,e average position is called a free 

oscillation. This average position of the particle 
is usually called the instantaneous orbit. The term 
"free" means that these oscillations are not direct
ly connected with the process of acceleration. We 
can therefore consider the free oscillations in a 
constant magnetic field and for constant energy of 
the particle. 

The fact that the free oscillations are independent 

of the acceleration process was demonstrated in the 
very first papers on the theory of cyclic accelera-
tors. It was shown that with increasing magnetic 
field !i (for a .given configuration) the oscillation 

*The present paper is based on work 1- 5 completed 
during the period 1950-1953. 

*Deceased. 

amplitude is damped like n.-'li 
The separation of the particle motion into a motion 

along the instantaneous orbit and free oscillations 
can be done uniquely in the absence of resonances. 
At resonance, the frequency of the free oscillations 

is integrally related to the frequency of revolution, 
so that the particle orbit is always closed. In this 
case the trajectory of the particle over a large num
ber of revolutions does not fill an area, but n,erely 
traces out a line. (The plane area filled out by the 
orbit will be the subject of our investigation .) For 
practical purposes, because of the presence of all 
sorts of perturbations in the magnetic field, the 
acceleration process cannot proceed at resonance, 
since the amplitude of the free oscillations in
creases sharply. 'We shall exclude the resonance 
case from our further cons iJerations 

Free oscillations develop dur~ng the proc~ss of 
injection of particles, and also from scattenng of 
particles by the residual gas in the accelerator cham-
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