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The technique of studying galvano-magnetic phenomena, described previously by the 
author, using crossed electric and magnetic fields and taking into account the quantization 
of the energy spectrum of the current carriers, is applied to calculations of the resistivity 
and the Hall constant in a strong transverse magnetic field in semiconductors in which the 
electron gas is not degenerate. 

1 • INTRODUCTION 

I N a study of galvano-magnetic phenomena one 
does not usually take into account the quanti

zation of the energy spectrum of the current 
carriers in crossed electrical field E and magnetic 
field FJ: However, the quantization of the spectrum 
changes the kinetic relations of the galvano-mag· 
netic phenomenon. 

In a previous work 1 an attempt was made to prove 
the method of calculation used by Titeica 2 to ob
tain the isothermal hole effect and the resistivity 
in a transverse magnetic field. This method allowed 
the inclusion of the quantization of energy spectrum 
of the current carriers. In the given work1, this 

method was applied to the calculation of the resis
tivity of the semiconductor and the Hall constant 
in a strong transverse magnetic field. 

It should be noted that Titeica made the first 
attempt to include the quantization of the energy 
spectrum of the current carriers in the fields E _l H 
in a calculation of the resistivity of metal in a mag
netic field. However, it seems to us that the physi
cal essence of the method was not sufficiently 
developed in his work and the meaning of the physi

cal quantities used in it was not given. Further
more, the derivation of the equations used for the 
calculation of resistivity p in the magnetic field 
and of the Hall constant R was not given, and there
fore the conditions under which they are applicable 
were not well determined. 

The object of study is the current carrier which 
moves in a solid body in the presence of crossed 
electrical and magnetic fields and interacts with 
phonons. As is well known 1•2, the crossed elec
trical and magnetic fields (E l H) change the spec
trum of the current carrier, so that the ener~y of the 
current carrier is determined by an expressiOn 
(including the spin of the electron) 

cf)Q± = P;j2[L + ltw0 (n + 1/ 2 ) + eEx0 + fLBH, 

n=O, 1,2, ... ; w0 =eHj[Lc; 
(1) 

where x 0 is the center of the oscillator, lla is 
Bohr magneton, 11 is the effective mass of the 
appropriate quasi-particle. 

Since with the application of the fields the 
motion of the current carrier becomes anisotropic{ 
one should introduce the conduction tensor a ik-(HJ 
(i, k = 1, 2, 3) and pik(ll), in which a 13 = a 23 = p 13 

= P 2 3 = 0. In Ref. 1 the equations were developed 
for the resistivity p in a transverse magnetic field 
H and for the Hall constant R: 

_ · E /( ·2 -l- ·2 ) • P·-lx x lx • ly' 

R =- iyEx!U~ + j~) H, 

(2) 

where j , j are the total electrical macroscopic 
current; inyar{ infinite gyrotropic medium. If one is 
considering an amphoteric semiconductor, then 
j = j + + j - and j = j + + j -where the plus and 

X X X :Y :Y y 

minus signs relate to conduction holes and elec
trons, respectively. 

2. THE HALL EFFECT AND THE ELECTRICAL 
RESISTIVITY IN STRONG TRANSVERSE MAGNETIC 

FIELDS IN SEMICONDUCTORS 

The current j. in an infinite gyrotropic medium can 
be determined fbr the general case in the following 
way: a) one calculates vy = [y§t], where U is 
the Hamiltonian of the considered system in crossed 
fields, b) one determines the current iy = jeSP(p~Y)j 
tr. means of the density matrix p corresponding to 

As has been shown previously 1, the average value 
of the operator of the y component of x velocity 
of a current carrier v is in the first approximation 

y 
equal tQ 

Vy = (1/fL) (Py + [L0W0 X 0 ) =- cEjH =I· 

Therefore, in the simplest case, when the current 

carriers are quasi-particles with some effective 
mass (quadratic dispersion law), 

jy =- e Sp (p vy) = (ecEjH) N (H, T), (3) 
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where N(H, T) is the number of the current carriers 
in the semiconductor per cm3 • Since we are ~t first 

interested only in the case of electric fields E small 
enough so that the current lx and j Y are proportional 
toE (and nonadequate electron gas), 

N (H, T) = N 0 (H, T) e<I>/kT, 

No (H, T) = 2 (2rt~~Tr• (4) 

X fiWo cosh ( fl.BH ) 
2kTsinh (fiw 0j2kT) kT ' 

are the statistical sums of the electron gas in mag
netic fields including the spin of the electron (<I> is 
the chemical potential). It is clear that the current 
j fundamentally lacks the Ohmic character. 
YIn the method of the stationary states, the current 

j x is calculated in the following way. 
l. In the Hamiltonian U of the system under 

study, we separate several main terms U which 
give the fundamental energy spectrum of~he system 
and small interaction terms V that are considered as 
perturbations. , 

2. We solve the problem .9t'0 'P'Q = sQ'P'Q and 
calculate the average value of 

XQ = ~ 'P'~x'P' Q d-e, 

in which the zero approximation is such that x 
q 

depends on the quantum number Q of the unperturbed 
problem. 

3. We introduce the operator V, which takes into 
account the interactions of the quasi-particles of 
the srstem that were omitted in the unperturbed 
problem. This operator is considered as a pertur
bation which causes transitions between stationary 
states. Since ~ Q depends on Q, then the transi-

tions induced by the perturbing operator V change 

x Q,. and thus specify di~pl~cement of the current 
earner to soine other pomt x ,.;, x o o· 

In the present formulation of the problem, the 
following difference should be noted compared to 
the usual formulation. It is usually assumed that 
the field E accelerates the current carrier, which 
gains ener:gy from the field and scatters this ac
quired energy in interactions with phonons. In the 
point of view adopted here the process takes place 
as follows: the field E (together with H .L E) parti
cipate in the formation of the stationary states of 
the current carrier, and the part of the energy of the 
carrier which depends onE, is equal to eEx 0 

(cf. Eq. (l)). 
The current carrier in displacing from x 0 to any 

x 0 ' exchanges energy with phonons eE(x 0 _ x 0 ') 

= eEI:lx0 • As follows from the probability of the 
displacement, ~0 depends onE and has different 

magnitudes for ~0 > 0 (displacement of the current 
carrier along the field E) and for l:lx0 < 0 (displace
ment against the field). These conditions specify 
microscopic current j x different from zero. 

A number of the current carriers passing in one 
second through a plane x = 0 from left to right is 
equal to 

N1 = ~ _ ~ iVQQ'/2 pQ,~' 
~=1. 2 (xQ>o. xQ,<O) 

where p Qoc is the equilibrium distribution function, 
ex.= l corresponds to the spin of the electron 
par aile 1 to the field H, and ex. = 2 to the anti
parallel spin. The number of current carriers 
passing through the plane x = 0 from right to left 
is equal to 

N 2 = ~ _ ~ /VQQ'J2pQr<' 
~=l. 2 (xQ>o, xQ,<o) 

Therefore the resultant current density j x is equal 
to - ) jx=-e(NI-N2 (5 

~1 ~ 
=- e LJ _ ~ / VQQ'/ 2 (PQa'- PQ,.). 

<X=l, 2 (xQ>o. xQ,<o> 

In the approximation used here as previously 1 , 

x Q = x 0 is the oscillator center; as perturbation 
V we use the interaction of the current carrier 
with the acoustical phonons. We shall limit our
selves to the single phonon scattering. The pertur
bation operator has the usual form: 

(6) 

where e1 is equal to f/f(the longitudinal waves), 
sis the soundvelocity, bj, b1 are the creation and 
annihilation operators of the phonon momentum hf; 
V P(r) is the periodic lattice potential. As is cus
tomary, we impose the periodic conditions by intro
ducing the unit cell of the linear dimensions L, f 
5o fo· 

Since V P.(r) varies suhstant~ally over the dis-
tances of the order of the lattice constant, then on 
calculation of W QQ '= /V QQ 12 the operator U0 
should be taken m the fo11owing form 

. ' i; 1 ( e )2 
:lto = 2m +2m Py + ·c-Hx (7) 

p2 
+ 2~ + eEx + V' (r) + V P (r) 

and't~e function tfr <J s-hould be determined from the 
equatiOn , _ , 

.7t0 'P'Q = sQ'P'Q, V (r) 
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V ~r) is the operator for the interaction energy of 
the electron with the optical phonons 3 • 

According to the theorem of Pekar3 , generalized 
by Luttinger4 , for the case H f, 0, close to the 
bottom of the conduction band 

'FQ = ~ rxQk = eikruk (r); rxQk = ~ rpQe-i(krld-r:, 
k 

where the wave function cp0 is found from the 
equation 

~ p2 
:::vm -"w· <-V x JvoTQ- ~QTQ' Jvo = 2[1. 

(8) 
1 ( )2 p2 + 2 f1. Py + ~ Hx + 2~ + eEx + V' (r), 

in which p.(H) is the effective mass of the current 
carrier in a magnetic field 5 • 

Using the result of Pekar3 in the solution of Eq. 
(8) we obtain, after several transformations 

+ 2/g2 ~ ) A W QQ' = 9 hsM o (sQ,- sQ,--!- ttWf u 

(9) 
X (Py-P~+hfy) 

' {JV! 
X ~(Pz-Pz±hfz)Wnn' JV!+ I 

(The upper factor is used in the absorption of 
phonons, the lower factor in the emission of phonons}. 
Here Mx) = 0 for x f, 0, ~x = 1 with x = 0; g = h2 /2m 

X r (Vu )2dTis the Bloch constant; N f is the number 
of acou~tical phonons with the momentum hf; 

Wnn' (10) 
00 2 

~ exp { + ifxx} lin (x- x0 ) fin, (x- x~)dx , 
-00 

H (x- x 0 ) is the Hermite polynomial, M is the mass 
of ions per unit volume. 

Introducing the exJression for W QQ, into Eq. (7), 
we express P in terms of x0 and use the properties 
of the symbol"f1(x) to exclude the summation over 

f,., fz: 
(ll) 

X 

Here Q is a function of i:he quantities n, P z and P , 
•or x 0 (P ); lis the linear dimension of the unit cell; 
x 0 '< o;" x 0 > o. 

Since we are limiting ourselves to the considera
tion of the phenomena linear in E (Ohm's law), p 
is chosen in the following way 

(12) 

= exp {k\.( <I>-::- hw0 (n + ~) +[L8H)}. 
Substituting p oc from Eq. (13) into Eq. (ll), and 
assuming that qthe field of the acoustical phonons is 
in a thermal equilibrium, we obtain 

Now we make in the Eq. (ll) the following changes 
of variables and the following transformations2: 

since 

0 ~ s ~ r; 0 ~ r ~ r 0 =(h/fLwo) fo 

X0 > O,x~ < 0); P~- P z = v; 

2. We integrate over s and u, using the 
properties of the 8-function and pass from a sum 
over fx to integral over df". 

3. Taking into account that according to 

Eq.(9) Py.z-P;.z+hfy.z=O, 

we introduce new variables 

r-> fy = (tLwo/li) r; 0 ~ fy~ fo; 

V-+fz=Vjh; -fo~fz~fo, 

and finally in the plane (f , f ) we introduce the 
polar coocdinates f' and rl'. After making all the 
above described transformations we obtain: 

. H 
· - _h_cosh~ 
]x - (2'1t)5 kT 

7t /o j, 

X~ ~sin rx'drx' ~ df' ~ dt/;: 
n. n' 0 o - j, 

exp (-n2f~/8[J.kT) 
X W nn' sinh ('ksfj2kT) 

(14) 

X . h(ftyf'sinry')f -(X;+Xi) -(X;+X!l} 
sm 2kT \e + e ' 
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We shall limit ourselves to those fields E, for 
which j is proportional toE, i.e., we replace in 
Eq. (14) sinh by its argument and Xi by zero. Then 
integrating over ex. ex.' we obtain 

fo 

J~ = 4kT~~(21t)'f ~ df' 
0 

Introducing the polar coocdinates in the plane 
((: f) and the new variable 

~ = nsl/kT.(O ~~~~max= TofT), 

for which 

fz = (~kTjhs) cos :p; f' = (~kTjhs) sin :p, 

and exfl'essing j"' in the form 
rt/2 . _ (k T\5 j 0ycosh(fL•H/kT) \ sin3 tp d(!) 

]x- 'lis} 4kTw0(27t)4 j costp ' 
0 

ToT 

~ ~4e-v~' cos' <1> 

X hE.! P(~,9)d~, s \ .4) 
0 

(15) 

where T is the Debye temperature, v = kT /Bp.s 2 • 

Accor9ing to Rumer 5 , P can be expressed in the 
form of a contour integral which in the case con
sidered above has the following form: 

ftWo 
p (~, 9) = isfnh(t,w0/2kT) 

__ -r+ico (16) 

X Jl oc1~T ~ exp { cx1kTy2 

't-iCX> 

+ hw y + _i_cosh(hWoY)- ch ('liw0 /2kT)[ d 
f 'liw0 sinh ('liw0( 2k T) f Y' 

ig = kTv~2 sin2 9; rx1 = 4kTv~2 cos2 :p, 

in which 7< 1/2kT, and may one set 7= 0. We are 
interested only in the case of large magnetic fields, 
when hcu 0 >> kT, since in the opposite case the 
quantization of the energies has a small effect and 
the usual kine tic theory apparently is more satis
factory than the method used in the present work. 

For hcu0 >> kT, , and setting 7= 0 and retaining 
only the main term 

P (~, ? ) ~ fiwo exp { -1kw; -1/16 vcos2 9 }· (17) 

In electronic sem-iconductor \i \ >> \ix\' so that 
the resistivity p is determined fr~m Eqs. (2), (15) 
and (17) and by the expression 

(18) 

rt/2 

I _ ~ sin3 tp d - -- rr; cos tp . 
(19) 

0 

To/T 

x \ ~4~F., exp[-v~2 cos2 (!,-1/16vcos2 <p]· 
~ sinh(~/2) ' 
0 

Since we are considering low temperatures only, 
we can replace the limit T D/T by""· Considering 
that the greatest contribution into the integral is 
from small ~and investigating the expression in
side the integral in Eq. (19) it is not difficult to see 
that for v >> 1, I= 12877 neglecting the terms of the 
order of 1/v etc. 

To make a final calculation of p(H, T) one must 
find fP(Jl, n . 

In the case of an electronic semiconductor we 
use the corresponding equation of neutrality and 
take into account the spin of the admixed electron 
in the absence of degeneracy of the electron gas: 

N 0 (H,T)e<I>"+n 1oc=nl, (20) 

where n 1 is the concentration of the (univalent) 1 

impurity 

nloef nl = (1 + 1/2 
(21) 

X exp {- !J..E*- <I>*- [L~H}fl 

+ (1 + 1/ 2 exp {- !J..E* + 1.1.~H- <I>*}P· 

In Eqs. (20) and (21) and below, the asterisk de
notes the division by kT; !J..E is the energy gap 
between the impurity level and the bottom of the 
conductor band. From Eqs. (20) and (21) it 

follows that for nw~ ~ 1, [L;H ~ 1 
approximately 

e<I> • = .. ( __ n-=1--.:.-
V 2Zo'liwo 

( 
+ • • \ 
nWO * /1£ X exp -- -ll.BH--- . 

!1 2 J 

(22) 

Substituting Eq. (22) into Eqs. (4), (2) and (18) we 
obtain, for H large, 

N (H1T) =2-'/, V lhZ0nw~ 

xexp(-!J..£* /2-liw~/4), 

(23) 
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R = -1 I Nec=(-V21 ec)(n1Z0hw:)-'1' (24) 

X exp (~E· I 2 + hw~ / 4), 
. (25) 

p= 16g2 (kT)5 exp(~E"!2+1lw~j4) 
9rt3Me21l,2s V2ni hs e2z'ln! h • . 

0 v wo 

From Eqs. (23) through (25) it is evident that the 
dependence of p and R on H,T is determined by 
the dependence of N(H,T). However, N(H,T) 
increases with increasing H because the ground 
level of the charged oscillator hw/2 (and also 
all its other levels) increase with the increasing 
H; at the same time the decrease in the inter
action energy between the spin magnetic moments 
of the current carriers parallel to the field H with 
the increase in His approximately compensated by 
analogous phenomenon for electrons in the ground 
impurity level. Therefore with increasing H for a 
given temperature both p and R increase very rapid
ly (~exp(hw~l4)). We note that in the ordinary 
kinetic theory, which does not include the quanti~ 
zation of the energy in a magretic field, both p and R 
aprroach a satt:rEtion value in semiconductors foc largeH. 
This result is indeed obtained because the depen
dence of N (H, T) is not taken into account, and 
this quantity has an appreciable value for 1iw0 >> kT. 

It should be noted, however, that the character 
of the change of N(H, T) with an increasing H de
pends on the type of semiconductor. For example, 
for an intrinsic semiconductor, the behavior of 
N(H,T) with the change of His different from the 
one described above. In that case. in the effective 
mass approximation I jy = rt + r; = 0, 
since N+(H, T) = N_(H, T) (the plus and 
minus signs relate to the holes and the electrons, 

respectively). 
In this case, in the absence of degeneracy, one 

may use the relationship (hw~±>I): 

V fL+ exp (- oe"- <D* - 1Miw~+) 

to evaluate <I>, from which 

e<I>* = (fL+ 1 fLJ'·e-se*/2 exp [fL~H (s_- s+)], (26) 

where S±=m/fL±• oe isthewidthofthefor

bidden zone. We obtain 

N+ (H, T) = N_ (H, T) 
(27) 

= 1I2Z0-1-hw~+ exp {[L~H (I-s+)+ <D*}. 

Consequently, 

E 
p = ++ ·-

] x lx 

9rt3 Mti6s6H 
8g2ce (kT)4 (28) 

In this case, p can both increase and decrease 
with an increase in H, depending on the relation
ship between n,p.+ and p._. If, for example, 

fL~>fL_, s+<s_, s+< I, 

then with increasing H p will decrease. 
In conclusion, the author expresses gratitude 

to Prof. A. G. Samoilovich, for suggesting this 
work and foc valuable discussions and help in 
carrying out the rresent wock. 
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