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I N a number of cases where it is impossible to 
obtain direct information about the process of 

formation or interactions of particles, because of 
their short lifetime, it is necessary to limit inves
tigations to the secondary particles, the decay pro
ducts of the initial particles (for example,the y
quanta from the decay of the 17°-meson). It is essen
tial to know how the distributions of the initial 
and secondary particles are related. 

Let us considerthe practically important case 
where the speed of the secondary particles is that 
of light and the angular distribution of the initial 
particles w (cos e, cp) does not depend on the azi
muthal angle cp and can be represented as a linear 
combination of terms of the type wn = ~,Hn + l)eosne 

x (n-integer). The distribution of the secondary 
particles F (cos e) is then an analogous linear 
combination consisting of terms of the type 

(l) 

where (3 is the speed of the initial particle, 

1jy2 = 1- [32, 1/J (&) = 1- [32cos2&, 

vnk =C~ ( n ~ 1 
1 cos2 & -1) cos'1-k -&. 

n- + , 

and the functions ok are connected by the reeur

rence relation: 

82 = sin2 & I y2 -1/1 (&) Arth (~)I [3y2, 

(Arth [3 = V 1 + [:l I 1 - [3). 

Using the above relations it can be shown that for 
any arbitrary even (odd) n the angular distribution 
F n (cos e) is a polynomial consisting of even 

(odd) powers of cosine. 
Expressions for the function F71 (cos e) were 

obtained for n ~ 6. In view of their cumbersome 

form, in the present short communication we limit 
ourselves tothe equation for the angular distri
bution for n = 4: 

(3) 

5 [ 89-16[32 5 ] 
= 41='4 2 + Jy2 - [:ly2 (7 -3[32) Arth [3 cos4 -It 

x cos2 & + - 5- [3-2[32-~ Arth r;l. 4[:l'y2 [1y2 

A general characteristic of the functions F n is 

the very rapid variations arbitrarily close tot he 
point (3 = l. Only for (3 "' l does the angular 
distribution of the initial and secondary particles 
become similar. With decrease in (3 the anisotropy 
of the angular distribution rapidly disappears. The 
higher the power of n the more clearly does this 
characteristic appear. Even for high values of the 
speed (3 the angular distribution of the secondary 
particles is still close to the isotropic and high 
precision of measurement is required in order to 
determine the angular distribution of the initial 
particles. This has application, for example, in 
the investigation of the angular distribution of 77 0 

mesons in the vicinity of threshold. Thus if the 
angular distribution of 77 ° -mesons is proportional 
to cos 2 e then the share of the isotropic portion 

of the angular distribution of the y-quanta for a 
proton energy of 660 mev is one-half, while for 

of 340 mev it consists already of almost (2) an energy 
8k+2 90%. 

(1 + [3 cos &)3((3- cos &)k+l- (1- [3 cos &)3(- (3- cos -&)k+l 

2ky2[31/1 2 (&) Until rather large even values of the index n the 
_ sfn2 ,a, k -1- 18k. roots of the equation F n (cos e) = ~ are included 

Y2 k in a small interval of angles around e* =arc 

Eq. (2) is valid fork ~ l. Fork ~ 2 the ok 
functions have the following form 

cos (l y'3). An important consequence of this char
acteristic of the Fn functions is that the emission 

of secondary particles at "the isotropic" angle B* 
depends little on the speed of the initial particles 
(for n = 2 the emission does not depend on (3 as 
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has been shown in Ref. 1 ). This allows the mag
nitude of the total cross section for formation of 
ITO -mesons in nucleon collisions to be determined 
from measurements of the emission of y-quanta 
only at one angle. If the distribution of the initial 
particles contains odd powers of the cosine then 
to obtain the magnitude of the total cross section 
it is necessary to measure the emission of second
ary particles at two angles 8* and tr-8*. Th~ iQ.di
cated "isotropic" properties of the angular dis
tributions of the secondary particles considerably 
simplify the problem of measuring the energy 
dependence of the total cross section particularly 
in the case where the angular distribution of the 
initial particles differs in the investigated interval 
of energy. 

1A. A. Tiapkin, ]. Exptl. Theoret. Phys. (U.S.S.R.) 
30, 1150 (1956); Soviet Phys.JETP 3, 179 (1956). 

Translated by G. L. Gerstein 
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WE give an exact solution for the behavior of 

particle~ of arbitrary spin in crossed constant 
and varying magnetic fields 1• 

The wave function of the particle in a magnetic 
field can he written in the form 

iftd<J! 1 dt =- (HM) <JI, (l) 

where 1/J is the ( 2 f...,+ 1 )-component wave function 
of the particle and M is the magnetic moment vec
tor operator, proportional to the angular momentum. 
We shall consider the case when the external mag
netic field acti~g on the particle ~s comrosed 0~ a 
constant field li 0 (along the z axis) anc a varymg 
field v.hich has components H x = ll 1 cos w t and 
H Y = H 1 sin wt. In this case the wave equation 

(1) becomes i! d<J! = _ ~ H [ iwt (J" _ .J" ) 
dt 2 1 e x l y 

(2) 

A 
where f is the angular momentum operator and Jl 
is the magnetic moment of the particle. 

Let us transform to a reference system rotating 
about the original z axis at a frequency w. The 
components of the wave function 1/J~ in the new 
reference system are related to the corresponding 
ones 1/Jm in the original system by the expression 

(-J~m~J). (3) 

Inserting expression (3) into Eq. (2), and making 
use of the well-known properties of the operators 
!.._ ± i 1" J we arrive at the following equation: x y' z' 

i!d<J!' I dt = (- HM +OJ) <ji. (4) 

The components of the magnetic field vector H 
which enter into this equation are the following: 
H = H ll = 0 and ll = ll 0 ; 0 is the aQgular 

X l' y ' Z 

velocity vector wk (where k is the unit vector along 

the z axis). The operator on the right side of Eq. 
(4) does not depend on time and contains the term 
w J, which is the "centrifugal energy" operator, 
whose form corresponds to the expression for the 
centrifugal energy in classical mechanics. 
Thus, Eq. (4) may be considered a wave equation 
in a noninertial (rotating) system of reference. 
Equation (4) takes on its simplest form in the (non
inertial) reference system where the z axis is 
chosen along the vector - J1 H + 0. The projection 
s onto angle {3 between this vector and the original 
z axis are easy to determine and are given by 

s = V w~ + w2 - 2ww0 cos .& 1 

w0 = 11-H0Ih 

~ = acrsln w0 sin.& IV w8 + w2 - 2ww0 cos.& I 

(5) 

(6) 

where tan !J = ll 1 /H 0 • Clearly, the solution of Eq. 
(4), whose initial component 1/J = o , can be m mmo 
written in the form 2 

(7) 

<Jim, (t) = L Gm'm, {oc, ~. y} Gm"m' {oc, !3. y} eim'st <fim'" 

The quantities G , I u., {3, y l entering into this m m 

equation are the matrix elements of the ( 2/ + 1 )
dimensional irreducible representation of the three
dimensional rotation group, corresponding to rota
tions through the Euler angles u. , {3, y (see, for 
instance, Ref. 2 ). 


