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The angular distribution of the elastic scattering 
in a center-of-mass system is given in the Figure. 
Attention is drawn to the fact that not a single 
event of elastic scattering was observed in the 
angle range 5-15 °. Above it was noted that the 
identification of elastic scatterinr-; events at small 
angles is associated with considerable difficulties, 
therefore it would be natural to assume that the 
latter state of affairs may be due to omissions in 
the analysis. In order for the differential cross 
section in the region 5 -15 ° to remain at the 
level 50 x 10- 27 cm 2/sterad, one would expect to 
find here 5-6 events on the basis of the existing 
statistical rna terial. A thorough second examina
tion of 40% of all the photographs did not dis-
close a single event of elastic scattering (addi
tional to the first analysis). The small statisti-
cal material does not provide the possibility of 

drawing a completely definite conclusion regard
ing the course of the angular distribution in this 
region, however it appears probable that in the 
region of small angles the differential cross sec
tions of the elastic scattering change non-monotoni
cally. 

dG/dSJ, lo-27 cm 2 sterad: 1 

!'10 

!20 ~ 1 
-~I 
~I 

!00 tn: 
ll.l: 

-~; \ 
80 ">I 

:.;;I 
~I 

GO t:: 
'ell 

«'0 ~' al 
"t;OI 

"'' zo ''-I 
-I 

I 
I 

!0 

The general character of the angular distribution 
of elastic scattering can he qualitatively des-
cribed within the frame of the optical model of a 
nucleus. The calculated angular distribution is 
shown by the solid curve in the Figure. The mean 
free path of the 17-mesons and the mean potential 
inside the nucleus V0 , used in these calculations, 

were determined from the total cross sections of 
the elastic and inelastic scattering and for a 
nucleus of radius R = (t;; lflc ) A 1 13 were found to 
he (2. 7 ± 0.3) x 10-13 em and (32 ± 8) mev respec
tively. The angular distribution obtained in terms of 
the optical model shows considerable deviation 

from experimental data only in the region of small 
angles. 

If non-monotonic change in the differential cross 
sections of elastic scattering in the region of 
small angles actually takes place, then for its 
explanation one may draw on the interference be
tween the coulombic and the nuclear interaction. 
In this case it would be necessary to consider that 
the amplitudes of the coulomhic and nuclear scat
terings of the negative pions on nuclei have dif
ferent sigris, in contrast to the results for low 
energies Oess than 200 mev) where the signs of the 
corresponding amplitudes are the same. 2 

The calculations of the energy dependence of the 
mean potential inside the nucleus, carried out in 
the investigations 3 •4 on the basis of the properties 
of the scattering of pions on free nucleons, are 
in agreement with this fact. 
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WITHIN recent years there appeared a number of 
articles by Piddington l- 3 devoted to a con

sideration of the properties of normal waves propa
gated in a homogeneous plasma situated in a mag-
netic field H 0 . In these works the calculation of 
thermal motion is made by the approximation method 
based on equations for mean particle velocities. 
Such a quasi-hydrodynamic method of investigation 
is not new; it has been repeatedly used in the 
analysis of similar problems by other authors (see, 
for example, Refs. 4 and 5 ). Dut at the same time 
it should be noted that many of the problems touched 
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upon in Refs. 1-3 have been studied on the Lasis 
of the more rigorous kinetic theory method6 - 11 • 

Most of the studies of the latter type apparently 
were not known to Piddington. 

Here we intend to dwell on only one of the afore
mentioned works by Piddington 1 in which high
frequency waves* (extraordinary, ordinary, plasma) 
are dealt with. We shall endeavor to elucidate in 
greater detail than is done in Ref. 1 the question 
of the relationship existing between the different 

types of normal waves, and then to contrast very 

briefly the results obtained by the quasi-hydro
dynamic and the kinetic methods of investigation. 
From the equations of electrodynamics and from 
the quasi-hydrodynamic equations for electron 
motion with due regard to electron pressure [as
suming the departures from equilibrium values to 
he small and proportional to ei (Wt- kr)], we can 

get the expression 

~; (1- u cos2 a) n6 - [1- u- v 

+ uv cos2 a+ 2 ~; (1 - v- u cos2 a)] n4 

+ [2 (1- v)2- u (2-v- v cos2 a) 

+ ~; (1 - 2 v + v2- u cos2 a)] n2 

(l) 

+ (1 - v) [u- (1 _ v)2] = 0, 

where n = cklw is the refractive index of the 
waves, u = w~ I w 2 = ( eH 0 I mew ) 2 ( wH, the elec-

tron gyrofrequency, e and m, the charge and mass 

of the electron), v = 4 rre 2Nimw 2 = w~e I w 2 (wOe' 

the Langmuir frequency, N, electron concentration), 
u. is the angle between the magnetic field H0 and 

the direction of propagation k, f3 e = y x. TIme 2 is 
the ratio of the mean thermal velocity of the elec
trons to the velocity of light c. We add that Eq. 
(l) was derived and discussed in a dissertation by 
the author of this letter as far hack as 1953 12 . 

Heference l2 also contains an analysis of the prob
lem by the kinetic theory method, which analysis 
appeared in Refs. 10 and 11 as well. 

Turning to a consideration of Eq. (l) it is neces
sary to keep in mind that in the present nonrela
tivistic case, {3; << 1. This inequality is easily 

satisfied in the cases that are of greatest interest 
from the standpoint of possible application, namely, 
those of the ionosphere ({32"' 10-7) and of the 

e 
solar atmosphere ( f3; "' 10-4 7 10-5 ) . Let us 
examine the wave behavior in the particular cases 
where u. = 0 and u. = rrl2. When propagation is in 

the direction of the field H0 ( u. = 0) we obtain from 

(l) the expression 

n7,2= (1 - v) 1 (1 ± Vu); n~ = (1- v) i ~;. {2) 

in which the subscripts 1, 2, 3 indicate that the 
values for the refractive index refer to the extra
ordinary wave, the ordinary wave and the plasma 
wave, respectively. The plasma wave appears in 
the equation when thermal motion is taken into 

account (when f3e--> 0 ni--> oo ). In the case of 
transverse propagation ( u. = rr 12) we find from E q. 

(l) that n~ = 1- v, while the values for ni and ni 
are determined from the equation 

~; n4 + [(v -1)(1 + ~;) + u] n 2 + (u- 1)2- u = 0. (3) 

To ascertain the character of wave behavior it is 
quite usual and important to analyze the curves 
n 2 ( v) by assigning fixed values to u and f3e for 
the given case. Considering the case where u. = 0, 
v.e see that for each type of wave there is a par
ticular dispersion curve determined from the forn;u

las given in (2). But the case u. = 0 is an excep
tional one, and when u. =I= 0 it becomes impossible 
for all values of n 2 to distinguish by means of a 
single continuous curve the behavior of only one 

type of wave. In the accompanying diagram are 
shown curves representing n 2 ( v) when u. = rrl2. In 

contrast to the case u. = 0, the values for n~ ( v) 
are represented here not by a separate curve but 
by what appears to be a continuation of the curve 
n 2 ( v ). In the diagram we refer to that part of the 
curve n 2 ( v) 1 , with n 2 > 0, where v > 1 ~ u, to the 
extraordinary wave, and the part where v < 1- u, to 
the plasma wave. Such a separation is based on 
the premise that in the absence of thermal motion 
( f3 e = 0) the plasma wave should disappear, but 
at the same time, as is known, the dispersion 
curve runs to the right of point v = 1 - u, and 
when v = 1- u: n i --> ""· Nevertheless, it should 
be en1phasized that there is a certain artificiality 
about the above separation into two types of waves, 
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the truth of which is made especially clear in the 
case involving the point v = 1- u, where there is 
no reason for referring the n 2 values either to the 
plasma or to the extraordinary wave. In addition, 
'it will be noted that similar peculiarities arise not 
only when u.. = 17/2, but also in the case of other 
values of ex. =f,. 0. The case where the values for 
u.. are small, and which is of some interest, is dis

cussed in Ref. 13. 
n" 

f()']IJ tJ 

Solid curves-ni( extraordinary wave); Dotted curves

n ~ (plasma wave). u = 0.5; f3! = w-4. 

If, for u < 1, the previously discussed coupling 
between the plasma wave and the extraordinary 
wave is always present, then upon satisfaction of 
the condition u cos2 ex.> 1, the plasma wave is 
characterized by a single continuous curve 
n~, 3 ( v) along with the ordinary w,ave. Here, a 

study of the roots of Eq. (1) shows that in the 
vicinity of point v = ( u - 1 )/( u cos2 v.. - 1) (when 
{3 Z << 1) there is a region in which the values for 
n on the n~ 3 curve n1entioned above are complex. 
If, for value~ n 2 > 0, the normal waves are char
acterized by the presence of propagation alone, and 
for the values n 2 < 0 they are undergoing pure 
decay, we have here an intermediate case where 
the propagation of the wave is associated with 
its attenuation in space even when collisions are 
disregarded in the e~uations. As for the case 
where u < 1,_ it can be established from Eq. (1) 
(provided {3; <<1) that the n 2 values hold true for 

all the wave types. 
An investigation of the problem dealt with in the 

preceding is entirely possible also on the basis of 

the kinetic theory method. The kinetic treatment 
leads to the establishment of the possibility of de
cay which is essentially due to the influence of 
particle thermal motion on wave propagation. This 
mechanism, however, is ineffective for the in
equalities 9 • 12 

For slowly decaying waves we can obtain an equa
tion which is analgous to the quasi-hydrodynamic 
Eq. (1)1o,11: 

[)~v [A sln2 ex+ B sin ex cos ex+ (1- u) C cos2 ex] ns (5) 

- [(1 - u- v + uv cos2 ex) + 0 1 ([)~)] n' 
+ [2 (1- v)2 - u (2- v- v cos2 ex) 

+ 02 ([)~)] n2 + (1- v) [u- (1- v)2] = O, 

A _ cos2 ex (1 + 3 u) . 3 sin2 ex 
- (1- u)2 + 1-4 u ' 

B _ 4 sin ex cos ex sin2 ex 
- 1 _ u , C = 3 cos2 ex + ---

1-u 

The values for the roots of this equation corre
spond to the correct solution of the problem, pro
vided the inequalities given in (4) are fulfilled. 
The magnitudes of 0/{3 2), 0 ({3 2 ) in (5) are of 
h 2 e 2 e 

t e order of f3e and are of small consequence; the 
fundamental difference between .E:qs. (1) and (5) is 
the fact that the expressions preceding n 6 in both 
are different. This difference in particular accounts 
for the fact that in the kinetic treatment the values 

2 ' for n can be complex also when u < 1, and not 
only in the case where u cos2 u.. > 1. 

As for the plasma waves, they undergo slow de
cay only in the vicinity of the point v = ( u-1)/ 
( u cos 2 ex.- 1 ). The plasma waves are rapidly 

damped, however, when [ 1-u-v+uvcos2 u.]>>f3!. 
The author is grateful to Prof. V. L. Ginzburg 

for the discussion of the contents of this communi
cation. 

* The assumption of high-frequency is equivalent to 
a disregard of ionic motion. 

1 J. H. Piddington, Phil. Mag. 46, 1037 (1955). 
2 J, H. Piddington, Nature 176, 508 (1956). 

3 J, H. Piddington, M.N.R. Astr. Soc. 114, 638 (1954). 

4 V. L. Ginzburg, J, Exptl, Theoret. Phys. (U.S.S.R.) 
24. 789 (1951). 

5 I L d .. .. • ucas an A. Schluter, Archiv. Electr. Ubertrag. a, 
27 (1954). 



LETTERS TO THE EDITOR 585 

6 A. I. Akhiezer and L. E. Pargamanik, Scientific Notes, 
Kharkov State Univ. 27, 75 (1948). 

7 G. V. Gordeev, j. Exptl, Theoret, Phys. (U.S.S.R.) 

23, 660 (1952). 
8 E. P. Gross, Phys. Rev. 82, 232 (1951). 

9 B. N. Gershman, j. Exptl. Theoret. Phys. (U.S.S.R.) 
24, 453 (1953). 

10 
B. N. Gershman, J, Exptl. Theoret. Phys. (U.S.S.R.) 

24, 659 (1953). 

11 B. N. Gershman, Collected volume in memory of 
A. A. Andronov, p. 599, 1955. 

12 B. N. Gershman, Dissertation, Gorki, 1953. 

13 B. N, Gershman and V. V. Zhelezniakov,. Trans, 
5th Conference on Problems of Cosmogony, published 
by Acad. Sci., USSR, p. 273, 1956. 

Translated by L. Rich 
144 

On the Motion of Inclusions in a Solid 

A.A.CHERNOV 
Crystallographic institute, 

Academy of Sciences, USSR 
(Submitted to JETP editor June 18, 1956) 

J, Exptl. Theoret. Phys. (U.S.S.R.) 31, 709-710 
(October, 1956) 

C ONSIDER a foreign inclusion in a solid body 
of infinite extent. Let the inclusion be spheri

cal in shape, and filled with substance {liquid or 
gas) in which the material of the solid under 
existing conditions has a marked solubility. Let 
a constant hut infinitesimal temperature gradient 
\l T be maintained in the solid; we will investi
gate the translational motion of the inclusion 
under the influence of this gradient. 1 •2 

It is obvious that, in a solid, the translation of 
an inclusion can take place only by means of the 
transfer of matter into the inclusion, hut a hydro
dynamic mechanism similar to that involved in 
the rise of bubbles in a liquid is excluded (we do 
not consider viscous flow of the crystal). In the 
presence of only a thermal field, the indicated 
transfer is connected with the difference in satura
tion concentrations of the solution at the cold and 
hot ends of the inclusion, and takes place purely 
by diffusion. The presence of other fields leads, 
generally speaking, to the appearance of other 
flows, (for instance, the presence of a gravitational 
field of intensity g can lead to convection*). Thus 
each element of surface surrounding the inclusion 
will have a velocity 

v=(Dfp)vc, (l) 

where p is the density oft he substance com
prising the solid, \l c is the concentration gra
dient of this substance in the material filling the 
inclusion, taken near the portion of the surface 
under consideration, and d is the diffusion coef
ficient. 

The concentration c, which depends, generally 
speaking, on the coordinates and on the time, is 
determined from the equations of diffusion and 
thermal conduction, with suitable boundary condi-
tions: 

ac ;at= D [de+ (krf T) dT]; 

ar1 1 at- (kr 1 cP)(afL 1 ac) p,r ac 1 at= X1d T1 ; ( 2) 

ar2 1 at= x2d r2. 
where k T is the coefficient of thermal diffusion, 

f1 the chemical potential of the contents ofthe 
inclusion, c p their specific heat, and X 1 , T 1 and 

X 2 , T 2 respectively the thermal conductivity and 

temperature inside and outside the inclusion. 
Leaving the boundary conditions out of the picture 
for the moment, we go over in these equations to a 
coordinate system in which the inclusion is at 
rest. Terms proportional to v'VT and v'V c, appearing 
as a result of this transformation, will be of 
second order in \lT (since v "-' \lT ). For 'VT= const, 
v does not depend explicitly on the time, and the 
partial derivatives of the temperature and concentra
tion with respect to time will he at most of second 
order. Consequently, to the approximation being 
considered here, both the temperature and the con
centration satisfy Laplace's equation. We now 
return to the conditions at the surface of separation. 
These will have the form: 

T1 = T2, x 1 aT1;an- x2 aT2jan (3) 

= -qD ac;an, 

x. 1 and x.2 are the respective coefficients of 

thermal conductivity' and a; an is an operator de
noting the derivative along t.~e normal to the sur
face. The right-hand side of the second condition 
makes allowance for the evolution (or absorption) 
of latent heat of crystallization q at the boundary, 
and the third conditions requires that the solid 
solution be saturated at this surface. Since the 
gradient \lT is small, the change in temperature 
along the surface of separation will not he great, 
but if one reckons thetemperature and concentra
tion with respect to their values at the center of 
the inclusion, the last condition in (3) will he 
written thus: 


