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Calculations are presented for the anomalous magnetic moment of, nucleons in whichthee~­
cited nucleon states with spin 3/2 and isotopic spin 3/2 are included, Divergent expressiOns 
were obtained which were regularized with the aid of Feynman factors. The cut-off para­
meter can be so selected that agreement between theory and experiment is obtained. 

l. INTRODUCTION 

THE usual theory for the interaction of 77-
mesons with nucleons explains qualitatively 

the anomalous magnetic moment of nucleons. 
Pseudoscalar meson theory gives the correct sign 
for the magnetic moment of the proton and neutron 
but does not give quantitative agreement with ex­
perimental values. For the case of a mixed 
pseudoscalar and pseudovector coupling of the 
meson and nucleon fields in a symmetric meson 
theory one obtains the following expressions for 
the anomalous moment 1 •2 : 
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Here gs/p.is the pseudovector and g is the pseudo­
scalar coupling constant, p. is the meson mass. It 
follows immediately that 

(3) 

Experimental measurements of the value of the 
anomalous magnetic proton and neutron moment 
)'ield 

(\ rexp. 1 79 ~ exp (4) 
0(.Lp = · fLo; OfLN = - I .91 !La 1 

where P.o is the nuclear magneton (in units of 
c"' l, 1f"' l). Consequently, 

I O(.LNxp I O(.L/xpl ~ 1. (5) 

Thus, a quantitative agreement between theory 
and experiment is absent. 

Progress in the use of isobaric theory of nucleons 
in problems of pion-nucleon scattering3 and gamma-

pion production 4 raises the need for the considera­
tion of the effects of excited nucleon states with 
spin 3/2 and isotopic spin 3/2 on the magnetic 
moments of nucleons. The object of the present 
paper is to calculate the anomalous magneti'c 
moment of nucleons with the inclusion of these ex­
cited states. The calculation is based on a semi­
phenomenological theory of 77-meson and nucleon 
interactions, as developed by Tamm, Gol'fand and 
F ainberg3• All quantities are written in Feyn­
man's notation5 • For clarity, expressions of the 
form ap.Yp. are indicated by the sign A i.e., a 
= ally p.' 

2. LAGRANGIAN SYSTEM. EQUATIONS OF MOTION 

The Lagrangian system for nucleons and mesons 
in an electromagnetic field in symmetric pseudo­
scalar meson theory with mixed pseudoscalar and 
pseudovector coupling between the mesonic and 
nucleonic fields has the form 
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(repeated Greek indices imply a summation from l 
to 4 and for Latin indices, l to 3) where T is the 

isotopic spin rn~trix of ~he nucleon, Q is the charge 
operator of the Isobar (Isotopic spin operator) 
(l+'J3)/2is the 'charge operator of the nucleon, 
viz., 

( 

2 0 0 0 

Q= 010 0 
0 0 0 0 
0 0 0 -1 

1 + -rs _ (1 0) 
2 - 0 0 ' 

(7) 

Si are the matrices introduced in Refs. 3 and 6; they 
change the charge state of a nucleon from the ordi­
nary to the isobar and back; E is the constant for 
the additional interaction of the nucleon with the 
electromagnetic field which is responsible for 
transitions from the ordinary to the isobaric state 
and hack; N is an operator which accorr.plishes these 
transitions in isotopic space. Its form and the form 
of E is given by Hitus4. 

Applying the variati_onal principle with the aux­
iliary condition that B y = 0, we obtain the fol­

lowing equations for the (I wave functions 1/J and B fL: 

(i"V- m) y = [e 1 ~ " 3 At (8) 

Eq. (8) can be written in the form 

4 4 
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iee ( 1 - m lvfv1~- 4 "[p.lalrf-rcr) ioN+. 

The system (8) can be solved by the Feynman 
method with the help of the inverse operators 

( L -l \.~.p = [(().{3, where 

Koo = (p- mt1 ; (lO) 

KP." = (p- M1ti [op.v 

(1/ M2 A A - 6 1) (21P.P + P1 1~ + 3M1"[p.) p,]; 

Ko11 = Kp.o = 0. 

3. CALCULATIONS OF MATRIX ELEMENTS 

One must calculate the contribution to the 
anomalous magnetic moment of nucleons of proces­
ses whose corresponding diagrams are illustrated 

in the Figure. 
In view of the strong singularity of the inverse 

operator KfLV, the matrix elements M diverge 

rapidly ( 4th order divergence). This divergence 
can be removed by the introduction of the Feynman 

cut-off factors. 
As a simplification in the calculations, the cut­

off is not applied to all matrix elements at once 
but to each component separately, i.e., for each 
divergence of degree n in the meson momentum, i.e., 
kn, one needs a separate cut-off factor 
[- t.. 2/(k 2 - fL 2 - >.. 2 )]Nn, where Nn is the small­
est integer for which the regularization integral for 
the given degree kn is finite. This procedure cor­
responds to the fact that the cut-off does not 
change the convergence in the absence of a cut-off 
value, i.e., the convergence for A= oo. 

The very unwieldy expressions in the integrand 
forM are transformed in a direct fashion: the 

quantities KfLV' KOO' svT Q(J are intermultiplied 

and the results grouped according to powers of k; 

denominators of the forn1 
(k2 ,_ 2kp1- 6.1) (k2- 2kp2- 6.2r1 
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Diagrams of third-order contributions to the anomalous magnetic moment 

of nucleons. In all diagrams, p 2 = p 1 + q; -·--=external electromagnetic 

field;---= nucleon in the ordinary state;== nucleon in isobaric 

state; ~ = meson. 

are transformed by the Feynman formula 
1 

1 I dx 
ab=J ax+b(1-x), 

0 

the integration is then performed with quantities 

of order {1 2/m 2 being dropped. Finally, we have, 

isolating expressions of the form o (A q- q A) 
in M, f1 

op.isob = ~ (!!!)2 
{- g~ (3 + 5-c ) (ll) 

2m !L 27t2 3 

This is now to be inserted into the eKpression 
for the anomalous magn~t>ic moment derived from the 
regular theory as discussed in the introduction 
( Eq. (2). 

4. NUMERICAL RESULTS. DISCUSSION 

The numerical results for Ofl depend upon the 
sign of the pseudovector coupling constant g (the 
sign of the constant fg1 was determined by Ritus 4 ). 

If one employs the con~tant values as determined 
by Tamm et al. 3 and Ritus 4 , 

g2 = 0.2; 

M1 = m + 2.25 [L; 8 = 1.61 

and assumes that g > 0, then for A~ m we have 

As A increasessthe absolute n.agnitudes of Oflp 

and Of1N increase while their ratio remains approxi­
mately one (changes slowly). Thus, with a 
suitably selected cut-off parameter, one can ob­
tain sufficiently good agreement between the 
theory and the experimental data. 

Kanazawa and Sugawara6 obtained an approxi­

mately similar result when they also computed the 
effect of isobaric states on the magnetic moment 
of nucleons. Our calculation differs from theirs in 
its greater accuracy. Actually, they do not in­
clude the additional interaction of the nucleons 
with the electromagnetic field (coupling constant 
f). Calculations indicate that this additional 
interaction is of the same order as other types of 
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interactions and its inclusion is necessary. Be­
sides this in the evaluation of the matrix, ele­
ments M, the authors replaced the inverse operator 
K f1 v by a "nonrelativistic" approximation ob-

tained by neglecting quantities of the type k/M 1 

in comparison to l. This is permissible in those 
cases if A./ M 1 << 1 but for satisfactory agreement 
between theory and experiment one must select 
A./M 1 :::o- l. Consequently, the "nonrelativistic" . 
approximation as used by Kanazawa and Sugawara6 

is inapplicable. 
In conclusion, I use this opportunity to express 

my gratitude to I. E. Tamm for suggesting ,this 
problem and for his continuing aid, and to lu. A. 
Gol'fand, V. Ia. Fainberg and V. P. Silin for 

valuable discussions relating to this problem. 
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Isothermal galvanomagnetic and thermomagnetic effects in isotropic semiconductors are 
treated theoretically in the case of intermediate and strong magnetic fields" 

ONE of the most effective methods of investi­
gating the properties and parameters of semi­

conductors is the study of galvanomagnetic and 
therrr,omagnetic effects. A theory of these effects 
has been developed by a number of authors l- 7 • Most 
of the authors start with a quadratic dependence of 
the energy on the momentum, and with weakness 
of the magnetic field. Meanwhile, experiment has 
revealed many cases in which it is not legitimate 
to consider the effective magnetic field* cp small. 

Even at room ten,perature, it is often necessary 
to deal with intermediate effective magnetic fields 
( cp2 "' 1 ), and sometimes even with strong ones 
( cp2 >> 1 ). Thus, for example, at T = 300° K and 

H = 104 oe, cp2 "" 1.5 for HgSe, and cp2 = 36 for InSb. 
At low temperatures we quite often deal v.ith inter­
mediate and strong effective magnetic fields. 
Davydov and Shmushkevich 3 obtained formulas for 

the Hall effect and for the change of electrical 
conductivity in the case cp>> 1, and l\1adelung6 con-

* By "effective magnetic field" we shall understand 
the dimensionless quantity cp= uH/c, which essentially 

determines the effect of the magnetic field H on the 
carriers of current in a semiconductor. Here u is the 

mobility oi the carriers, and c is the speed of light. 

sidered the same phenomena in the case cp~ l, but 
only for semiconductors with an atomic lattice. 

The present work concerns the extension of the 

theory to the region of intermediate and strong mag­
netic fields, for various types of interaction of the 
carriers with the crystal lattice. We also determine 
which features of the galvanomagnetic and thermo~ 
magnetic effects depend on the statistics and on the 
scattering law. We consider only isothermal ef­
fects; for, as Tolpygo 5 showed, the adiabatic 
effects differ little in magnitude from the isothermal. 

1. SEMICONDUCTORS WITH CARRIERS OF A SINGLE 

TYPE 

Transport Equations 

The kinetic equation for the distribution function 
f( r, p) of the carriers, in rr;omentum ( p) and co­
ordinate (r) space, has in the stationary case the 
well-known form 

Here v is the velocity of a carrier, F is the ex­
ternal force acting on it, f ( ~) is the equil-

0 kT 

(l) 


