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On the basis of Vonsovskii's polar model of crystals several questions in the theory of 
absorption of light and the theory of photoconductivity in atomic semiconductors are examined, 
taking excitons into account. We consider terms of third order in the Hami !toni an, which de
termine the probability of different transitions among the elementary forms of excitation; 
this allows an examination of the kinetics of photoconductivity. 

1. INTRODUCTION 

THE polar model of crystals was proposed in 
1934 by Shubin and Vonsovskii 1. In this 

model the semiconductor in the normal state is 
considered as an idealmonocrystal, at the lattice 
sites of which are atoms with one valence S

electron. In the excited state sites can occur at 
which there are two electrons, and correspondingly, 
empty sites. The appearance of this type of ex
cited state causes its electrical conductivity. Ac
tually, on account of the translational symmetry, 
the states of the sites in which there are two elec

trons (or, respectively, none) can propagate 
through the crystal, which leads to the appearance 
of degenerate states. Since each state ¥.ith 
definite sites occupied by two electrons, or with 
err.pty sites, is quasi-stationary, we obtain a ""hole 
Land of energy levels. In this way the energy spec
trum of an atomic semiconductor, from the point of 
view of the polar model, can even be continuous; 
hut since the excitation of states with double and 
empty sites requires an expenditure of energy, 
the excitation of current states in the crystal re
quires a known activation energy, in spite of the 
existence of the continous spectrum. Thus, for 

example, if one considers the exchange interaction 
bet¥.een the electrons, the energy spectrum of the 
crystal has the form shown in Fig. 1, from which it 
can be seen that the conduction states occurring 
in the upper hand, overlapping the lower one (due 
to the exchange interaction), require an activation 
energy for their excitation. 

FIG. l. 1- N onconduction band; 2- Conduction 
band. 

It is known 2 that an energy spectrum of this 
forn1 (for weak excitation of the crystal) can he 
regarded as the energy spectrum of a system of non
interacting quasi-particles. In particular, the 
branch of the energy spectrum corresponding to the 
existence of conduction states in the crystal can 
be considered as the energy spectrum of a collec
tion of positively charged (holes) and negatively 
charged (doublets) quasi-particles. 
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Besides the types of excitation of the crystal 
mentioned above there are states possible in 
which the electron in one or several aton,s is found 
in an excited state. To such states, on account of 
translational degeneracy, there also corresponds a 
definite energy band. The corresponding quasi
particles are called Frenkel excitons. It is not 
difficult to show by a simple calculation (this, by 
the way, is also obvious physically) that the 
Frenkel excitons form currentless states (i.e., 
these quasi-particles are electrically neutral). 

In what follows we shall neglect the exchange 
energy. This leads to the result that the lower 
energy band of the spectrum represented in Fig. 
1 and corresponding to the currentless states degen
erates into a single energy level, separated by a 
gap fron, the band of excited states. Assuming that 
the excitation energy of the excitons is greater 
than the excitation energy of the conduction states, 
we obtain an overlapping (in the upper part) of the 
exciton energy band ~nd the energy band cor~e
sponding to the conduction states (Fig. 2 ). 

FIG. 2. 1- Non conducting state; 2- Conduction 
band; 3- Exciton band. 

2. THE HAMILTONIAN OF AN ATOMIC 

SEMICONDUCTOR ON THE POLAR MODEL 

We shall introduce the basic features of the 
derivation of the Hamiltonian for the polar model 
of semiconductors and analyze the physical mean
ing of the results obtained. 

We shall proceed from the well-known representa
tion of the Hamiltonian in terms of quantized wave 
functions: 

11 = \•y+ (x) H (x)lr(x) dx (2.1) 

+I J \ tF+(x)'P'+(x') G (I r- r' I)'F(x') lf ( c·) dxdx'. 
J 

H (v) =- h'" v~ ...;_ ~; G (! r -- R. ) 
•• :!.m ' ....... ' '' (2.2) 

is the Hamiltonian of an electron moving in the 
force field of all the ions; G ( I r - R I ) is the 

q 

potential of an ion located at site q; 

G (I r- r' I)= e2 I I r- r' i (2.3) 

is the potential energy of interaction of two elec
trons. The quantized wave functions have the form 

lf' (x) =~a. clJ (x.l: tp·· (x) ' ' .LJ Jt 'k 
h 

~a+·~* ( ·) (2.4) L.i h •h .\. , 

" 
where at, ak are the usual operators of the second 

quantization for the electrons (Fermi amplitudes), 

l/Jk (x) is a complete orthogonalized system of 

functions; the summation is taken over all possi
ble states of the electron. Substituting (2.4) into 
(2.1) we obtain the well-known expression for the 
Hamiltonian of a system of electrons in terms of 

Fermi operators 

If =--o L(k I H ll)ata 1 
hi 

' ~ ~ ('l T:!. ~ !1:: 
hips 

(2.5) 

G I ps) a+ct-r-a a . 
h l s jJ 

The matrix elements are determined by the ex

pressions 

(k 1 H !l)=~·;,;~(x)H(x)y1 (x)dx, (2.6) 

( ld I G I JIS) (2.7) 

= ~ 't~< (x) ·~; (x') or; r -- r' ll ·~p (x) ·1, (x') dx dx'. 

In the polar model of atomic semiconductors one 
proceeds from the following approximation. The 

operator (2.5) is taken as being the Hamiltonian, 

but in calculating the n:atrix elements~the aton,ic 
wave functions, i.e., the wave functions of the 
isolated atorr,s, are used. Ilere, if it is necessary 
to consider the existence of exciton states, not 
only the wave functions of the norn,al state hut 
also the wave functions of the first excited state 
are taken into account. This systen, of functions 
is not complete. 

Furthermore, functions referring to different 
atoms are nonorthogonal. In this way, strictly 
speaking, the expression for the Hamiltonian (2.5), 
computed by use of atowic functions, is inexact. 
Ilowever, considering that the v.ave functions of 
different atoms overlap weakly, their nonortho
gonality is neglected in the polar theory of sen:i
conductors. It would be more nearly correct to 
orthogonalize the systern of atomic wave functions 
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by the method of I3ogoliubov 3 ; however, this will 
not be done in this work. \Ve should have a complete 
system of functions if we considered all possinle 
excited states of the atoms. The incompleteness 
of the system of functions used apparently does not 
have any essential significance in the majority 
of cases. 

Thus we put 

ljlk (x) = 9; (r- Rq) ut (a), (2.8) 

where i = 0 corresponds to the ground state, i = 1 
to the excited state of the atom, u1 (a) is the spin 

function [in Eqs. (2.1)-(2. 7) we understand by x 
the collection of space and spin-coordinates] . 
Calculating the matrix elen,ents by means of such 
functions and substituting them into (2.5) we ob
tain, after sun;ming over spins, 

(2.9) 

(2.10) 

lit],,,; '"''' = ~ 9~, (r- R) H (r) 'P;. (r- Rq) d-e 

[ Ii ( r) in fact coincides with 11 (x), since the spin 
variables do not enter into the last expression]. 

(2.11) 

X G (I r- r' I) 'f· (r- R ) rp. (r'- R ) d-e d":'. 
ls qa l4 q, 

As is well known, the F erllli operators a+. 
qts 

and a . act on wave functions, the arguments of 
qts 

which are the occupation nun;bers of the electronic 
states C ( n . ). In the polar model the states of 

qts 

the crystal are characterized by the states of the 
lattice sites. Let us introduce the symbols 

i l when one electron with a right-hand spin 
R = is at site q, 

q 

0 in all remaining cases 

and analogously, L for an electron with a left
q 

hand spin, £+ for an empty site, E- for a site q q 

with two electrons, EL and ER for an excited elec-
q q 

tron with left- and right-hand spins, respectively. 

Clearly, the equati~n 

Rq + Lq + Et + Ei + E: + E~ = 1 (2.12) 

nmst be satisfied. The quantities R , L , £+ can q q q 

be taken as the dynamical variables of our system, 
having the meaning of the corresponding occupation 
numbers. The wave functions then must be con
sidered as functions of these variables. 

Let us introduce the operators of the second 
quantization corresponding to these variables: 

Cfq• Xq• \l' q' <I> q' (q' tJ q (and those associated with 

them) act respectively on the variables R L £+ 
q' q' q' 

E~. E~. E~. Following Shubin and V onsovskii 1 

we assume that these operators obey the Bo$e 
commutation relations. 

For the transforn,ation of the Hamiltonian (2.9) 
to these operators, we proceed in the following 
way. We designate by C 0 = C ( 1, 0; 1, 0; 1, 0; ... ) 
the wave function of the "zero-order" state ( one 

electron with a left-hand spin on each atom). Then 

a function of the form 

(2.13) 
s u 

C=Jic+a+Jic+a+.,( ·IO· )C J?; 1; hz hz ~ • • • , , , • • • o 
i=l 1=1 

corresponds to the state of the crystal in which at 
sites f 1, ... { 5 there are two electrons each (with 

opposite spins), the sites g 1 , ... g 5 are empty, 

at the sites k 1, . o o hn there is one electron with 

a right-hand spin, and at the remaining sites 
r 1, . o • r m there is one electron with a left-hand 

spin. Here C a+ · a+ a+ The gi= gi,-Y.' fi= fi·y,· 
function 

z (fl ... fs; gl ... gs; rl .. 0 rm; hlo 0 0 hn) 
(2.14) 

= z( ... ; n~, n:; .. . ) 
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is symmetric in the indices r or h separately and 
antisymmetric in the indices for g. 

Noting that C ( ... n , m ; ... ) == D ( ... , R , 
q q q 

L , E+, E-, ER, EL, ... ), it is possible to re-q q q q q . 

late uniquely the result of the action of the Bose 
operators on the function D to the result of the 
action of the Fermi operator on the function C. 
Thus, for example, it is easy to convince oneself 
that to the operator a +c C .a , corresponds the 

q q q q 

operatorifi <1>+<1> ,ifi+,, 
q q q q 

Omitting all these transformations, we write 
down immediately the expression for the Hamil
tonian in Bose operators without taking into ac
count the excited states of the atom, which is con
siderably simpler than the complete Hamiltonian, 
and we show by this example which simplifications 
are to be used in the sequel. It must also be men
tioned that the expression presented below for the 
Hamiltonian already contains a series of sinJplifi
cations, inasumch as terms were discarded which 
correspond to the simultaneous transition of two 
or more electrons (the integrals corresponding to 
such transitions are considerably smaller than the 
remaining terms). Therefore, for the Hamiltonian 
in the polar model (without taking into account 
exciton states) we obtain the well-known Hamil
tonian of V onsovskii 1 

(2.15) 

+1/2 ~Bqq'('F'l'¥ q-wt<I>q)('F't'Fq,-Wj-;ll>q') 

+ 1/2 2:/ qq' (wt'F'f,-'F'j-w~) (ll>q 'F'q'-'F'qll>q') 

- 1/2 ~lqq' ('¥J'¥q+wtwq) ('¥f,'¥q'+ wt<I>q') 

+ 1/2 ~ Iqq' (xf-rrt- xt rp'J;)(x.f,cp q- X/f q') 

+ 1/~] Lqq' [(rpqrp~ + X.qXf,)(ll>JIDq'- ~l'¥ q') 

+ (cpq'Cft + Xq'Xl) (ll>f,ll>q -'¥f,'¥q)] 

+ 1/2 ~ Lqq' [(<:fqX<J'- Ufq') (wt'¥~ 

;r. +'I·+) + (" + + . + +) (If u,• u.• "' ) -'±'if' q yqX.q'-Xq'fq' 'l>q.rq•-Iq'l'q•] 

(the summations are over all indices q, q '). 
In what follows we shall examine cases in 

which the number of excitations is small; in other 

words, in which at the majority of lattice sites 
simple atoms with right- and left-hand spins occur, 
whereby both directions of spin are considered 

---- ----
equallyprobable.Therefore, en+ en rv 1/2 and X+ X 

Tq Tq q q 

'"" l/2, where the bar designates the average value. 
Since the number of simple aton:s is considerably 
larger than the number of empty and double sites, 
we can neglect the changes of state of the collec
tion of simple atoms in the occurrence of these 
and other excitations; and we can consider this 
collection of simple atoms as a classical system, a 
special reservoir, from which can arise empty and 
double sites, but the states of which do not change 
thereby. This is somewhat analogous, on the one 
hand, to the introduction of a thermostat in the 
derivation of the Gibbs distribution; or, on the 
other hand, it is analogous to the classical repre
sentation of radiation of great intensity in the 
quantum representation of the absorbing atom. In 
the latter case the radiation is considered classi
cally and is described by commuting quantities. 
Analogously, in our case, considering the collec
tion of simple atoms as a classical system, we can 
consider operators referring to the simple atoms as 
cornm uting quantities, and in correspondence with 
this we put 

(!)+ = (;> = ·;·+ = I = 2-';,_ 
'q . q ·q ·q (2.16) 

Hence, the Hamiltonian (2.15) simplifies and takes 
the following form: 

(2.17) 

+1; 2 'L,Bqq· ('l';ilf'q-<f>~>r>q) C¥~ 'f'q·-<IJj:tT>,i') 

+ 1/ 2 ~I qq' (<D~ 'F;,;- 'F'dll>J) (<f>r/Fq·- 'F'r/l\1·) 

- 1/ 2 ~I,j(j' ('l'lj:'¥" + <vt<I>q) (o/:.'v". + <J>;pv,/) 

.L 11 '\.""1 L ['T L 1 -j-'r' +m 'l•·!·lf' 'l' ·'f' J 
1 /2 .L.J qq' y)l/ ( )(j' '-l!q''-:l_'q~ fj tj'~ q' q • 

In this approxinJation the principal feature is the 
circumstance that the operators of creation and 
annihilation of empty and double sites disappear, 
so that in this approximation the average number 
of the latter is an integral of the motion. Further, 
an additional approximation occurs, which results 
in the fact that in the operator (2.17) only terms 
quadratic in the operators remain, i.e., the energy 
of rr.utual interaction of the excitations is neglected, 
considering the number of excitations small. Then 
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in place of (2.17), we obtain 

H - 1;' ( 4 ' D)" (•li+•) _L ll>+(p .) 
- !2 L T LJ lQ •q J q <1 

(2.18) 

The expression for the Hamiltonian, considering 
the exciton states of the atoms and corresponding 
to (2.15), is too cumbersome, and we shall not 
present it here. Below is given the expression for 
the Hamiltonian, taking into account the exciton 
states, in the approximation corresponding to (2.18), 
with, however, this difference: that in it are in
cluded terms of the third order relative to the opera
tors of second quantization: 

(2.19) 

(2.20) 

+ Q(2l ~ ('f',jc-'I'q+(D;f<Dq) 

+ 2: Q y;) ( rt;t rt;t + r/;qrt;f) + ~ QW (f3tf3t + pqp_t-) 

+ 2: Q}'~ (<J); <Dt + <I>_j-<Dq) 

- ~ Q};j('Yt'f't+'f'q'Pf); 

(2.21) 

Q and N are certain coefficients, the form of which 
we shall not write down in the present article. 

The operators u.. , u.. +, P. +, {3+ are the operators 
q qt-'q q 

for the left-hand and right-hand excited sites 
(exciton sites) which are connected with the 
operators of the excited sites presented earlier 

by the relations 

" ,,+ + vq = r~;,1+ c, u,1 = r~;,1 + c, (2.22) 

where c is a certain constant, chosen in a definite 
way. It is necessary to carry out the transforma
tion (2.22) in order that terms in the llamiltonian 
of first order relative to the operators disappear. 

The physical meaning of the quadratic and third 
order terms in the operators is more easily ex
plained after the transformation of the Hamil
tonian to the space of quasi-momenta and the intro
duction of the corresponding quasi-particles. 

3, TRANSFORMATION TOTHE SPACE 

OF QUASI-MOMENT A 

For the transition to the space of quasi-morne uta 
we introduce the following canonical transforma
tion: 

'!'',1 = N--'!o ,2: 'f"ke-i(k-:-:b)R,1 ; 

k 
(3.1) 

<Pq = N-'i• ~ <I>ke-ikRq , 
k 

r~; = N-'lo "ftke-il<R" 
lj L.J . ' 

k 

pq = N-'1• ~Cke-ikRif, 
h 

where b is a vector of the reciprocal lattice (and 
analogously for those associated with it). Opera
tors with the indices k, describing processes of 
creation or annihilation of the corresponding quasi
particles, satisfy the same commutation rules as 
the operators with indices q. In the Fourier trans
formation (3.1), the writing of ( k- rr b) in place 
of k for the operator 'l' denotes that the subtraction 
of the quasi-momenta of the holes is carried out 
from the upper edge of the band, and not fron, the 
lower one, as is done for the doublets and ex
citons. Thanks to this, we obtain a positive 
effective mass for the holes. 

After carrying out the transformation, we obtain 

where np = t'l i !Jk, n f, n { are operators for the 

occupation numbers of the left-hand excitons, right
hand excitons, doublets and holes. In this way the 
B amiltonian (3 .2) is presented in the form of the 
sum of the energies of the elementary excitations. 

E~, E k have the meaning of the energies of the 
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corresponding elementary excitations. In the ef
fective-mass approximation they have the form 

where 1.1£ is the excitation energy of a doublet or 
hole, !1E' is the energy of excitation of an exciton, 
p. is the effective mass of a doublet (hole), J1 'is 
the effective mass of an exciton. 

As far as the terms of third order are concerned, 
after transformation to the space of quasi-momenta 
we obtain 

I-l<s> = L.K(l> (k, k") o (k' -k- k") 

+ r.K<2> (k, k") o (k'- k- k") 

+ ' + . 
X [•D",cD"" (3-"- ~") + IJJ",cD[,, (&" - ~/i)] 

+ r.K<3> (k', k") o (k' + k"- 'rrb- k) 

x rwt'Yt, (&"+~") + w", '¥"" (&t + ~t)] 
+ r.K<4> (k) o (k'-k"- k) 

X [(~t:"" + &t;3-k") (&k- ~") 

(3.4) 

+ (C",(t, + 3-k,&t,) (&t- &t)J 

(summation over all indices). The form of the co
efficients K(i) is not given here on account of its 

complexity. 

4. ANALYSIS OF SEPARATE TERMSOFTHIRDORDER 

The physical meaning of the separate terms of the 
expression (3.4) can be easily explained directly 
from the form of the operators. Thus, for example, 

the term 'Ilk -'II k" lJ k corresponds to the annihila-

tion of a left-.hand exciton with quasi-momentum k. 
The energy of the exciton is thereby transferred to 
a hole with quasi-momentum k ", as a result of 
which the hole acquires a quasi-momentum k '. It 
must be mentioned that this process proceeds with 
conservation of momentum. The term associated 

with this one' 'II k' wt" " k' corresponds to the in

verse process, the process whereby a left-hand ex
citon with quasi-momentum k arises at the expense 
of the kinetic energy of a hole with quasi-momentum 
k '. The hole as a result of this process acquires 
a quasi-momentum k ". This process also takes 
place with conservation of momentum, as, by_ the 

way, do all the remaining processes described by 
the Hamiltonian (3.4). 

Great interest attaches to the terms of the !l amil
tonian (3 .4) containing the operators <llk''~~k"~k 

and <llk''~~k" !Jk. These operators describe the 

process of spontaneous annihilation of a right- or 
left-hand exciton with the quasi-momentum k, with 

• simultaneous formation of a doublet with quasi
momentum k' and a hole with quasi-momentum k ". 

The associated operators <Jlk,'llk"gk and (j)k,'llk" iJ: 
correspond to the inverse processes--- processes of 
production of right-hand and left-hand excitons by 
recombination of a hole and a doublet. The physi-
cal meaning of the remaining operators is also • 
clear from their individual forms. 

The Hamiltonian H (3 ) can be regarded as the per
turbation of a system, the stationary state of 
which is determined by the HamiltonianH (2 ). In 

this way H (3 ) detern1ines the transitions .between 
the stationary states. The quantities K(') ( k, k ', 
k ") determine the probaLilities of the correspond
ing transitions. The computation of these proba
bilities will not be given in the present article; 
however, it is already clear from the Hamiltonian 
itself how, within the frame of the polar model of 
atomic semiconductors, one can proceed to the ex
ami nation of very detailed processes. 

5. SOME REMARKS ON THE HAMILTONIAN OF AN 

EXTERNAL PERTURBATION 

Let U ( r, t) represent the operator of an external 
perturbation. We shall write down the Hamiltonian 
of an external perturbation in terms of the quantized 
wave functions 

Substituting the quantized wave functions into this 
and summing over spins we get 

H' r.u + (5.1) = q,i,;q,i, aq,i,s aq,i,s ' 

where U . . is the matrix element of the opera-
qlq;q2'2 

tor U ( r, t) computed by means of the atomic wave 
functions of the normal and first excited states, 
where i = 0 corresponds to the ground state and 
i = l to the excited state. a+, a are the usual 
Fermi operators of the second quantization for 

creation and an nihil at ion of the electron at the 
corresponding s1te. 

Let us examine some of the possible transitions-
in the first place, processes not connected with the 
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generation of excitons. Obviously such processes 
are described by a Hamiltonian of the form 

H~ = ,_, U [ -'- + 
L q,o; r;,o OJ, osaq,Os + Oq.osDq 05 ]. 

qtqzs - 1 

(5.2) 

After changing to Bose operators we get in the 
quasi-classical approximation 

H~ = 1/ 2 ~ U qoq'o (cDJ!l>q' (5.3) 
qq' 

Therefore, as before, terms corresponding to the 
creation and annihilation of doublets and holes dis
appear in the quasi-classical approximation. From 
this we immediately obtain the following import
ant result. If the external perturbation is a light 
wave, then holes and doublets cannot arise upon 
absorption of the light, i.e., conduction states can
not appear. Consequently, the absorption of light 
in atomic semiconductors, from the point of view of 
the proposed theory, is photoelectrically inactive 
and bears a purely exciton character. If one gives 
up the quasi-classical approximation, the creation 
of holes and doublets will be possible; however, 
the probability of this process will be very small 
in comparison with the probability of exciton ab
sorption. 

As regards processes described by the Ilamil
tonian (5.3) in the case when the perturbation is a 
light wave, this Hamiltonian then, as it is not 
difficult to convince oneself, describes the Compton 
scattering of light by free doublets and holes. In 
what follows we shall not be interested in this 
process. 

In order to study the exciton n.echanisrr, for ab
sorption of light, it is necessary to put qi = q2 , 

i 2 = 0, i 1 = 1 into (5.1); then we obtain 

H~l = ~[UI![IJO ad~saijOS + uijOifl a,]~s aijlS ]. (5.4) 
ijS 

Since the matrix element U is computed by 
qlqO 

use of real functions, U = U . Going over 
qoql q1qo 

to Bose operators and to the quasi-classical approxi
mation, we get 

H~l =T'!z ~ U qlqO (~Xj- + Cl.q) (5.5) 
fj 

-2-'" ~ L' iJl'IU (p;; + fl,l). 
lj 

In the Hamiltonian (5.1) are contained terms de
scribing even more complicated processes, for ex
ample, the simultaneous absorption of light with 
the excitation of an exciton and scattering by 
holes, etc. However, all these processes have a 
considerably smaller probability, and in the sequel 
we shall not consider them either. llere we only 
remark that from this theory arises the possibility 
of processes, whereby a light wave causes the an
nihil~tion of e~citons already existing in the crys
tal Wtth formatwn of holes and doublets, which 
leads to an additional conductivity of the crystal. 

If the external perturbation is a static one, for 
example, the force field of an impurity atom, the 
latter can also cause a series of transitions be
tween states with the same initial and final energy, 
f~r example, the decay of excitons with forn.ation 
of holes and electrons, etc. The corresponding 
Hamiltonian can also be obtainedfrom (5.1). 

Going over to the Bose operators (and to the 
quasi-classical approximation) we obtain, after the 
corresponding transforn.ati ons, 

H~1 = 2-'f,Y:.U ·o ("' -L IX+- r.-+- r--) (5.6) ifl'i q ' 'I i·'q r''l 

+ 1/2 r. u/01}0 (w;J-q,1 + (f>_t<I>q-'YJ'I"1- 1Yt<r'q) 

+2-'iz "E. U ftqo [(f:JJ -o:f)o/f'F,/+ (~_t- o:./)'1'/.l."q] 
_j '>-'i· ,, U [(' , ) r'+ I ·•- ('r+ · 
,-- -'""' - ftqo ;:JrJ- CI.J r; 'l,i + .?! + cx_f'fl'_:(]J,1]. 

After the transition to the space of quasi-mon1enta 
it is easy to explain the meaning of each tern, of ' 
the Hamiltonian (5.6). Thus for example, the first 
term of the Hamiltonian gives those transitions in 
which the law of conservation of energy cannot be 
satisfied (they can be considered as virtual transi
tions). Therefore, in considering processes of 
interaction and transforn,ation of quasi-particles 
into each other this tern; can be discarded. The 
second term of the I!arr.iltonian (5.6) describes the 
scattering of holes and doublets from the ir..purity 
site. The quasi-momentun• of the doublet or hole 
in such a process takes on a different value after 
scattering. 

The third term of (5.6) describes the process of 
annihilation of a right-hand or left-hand exciton at 
the impurities with transfer of their energy already 
existing in the crystal to the hole, and the inverse 
process of the creation of a right- or left-hand 
exciton at the expense of the kinetic energy of 
a hole. The analogous process with doublets is 
impossible, since in this case a two-electron 
transition would be necessary, which canno't be 
produced by a static field. From this it follows 
that that part of the n,obility which is caused by 
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the presence of impurities will be different for 
holes and doublets in exciton semiconductors. 

Finally, the fourth term of the Han,iltonian (5.6) 
describes the process of decay of a right- or left
hand exciton at an impurity site into a doublet and 
a hole, and the inverse process of formatiol!' of a 
right- or left-hand exciton at the expense of re
combination of a hole and a doublet at the impurity 

site. 

6. DERIVATION OF AN EXPRESSION FOR THE 

PROBABILITY OF DECAY OF AN EXCITON AT AN 

IMPURITY WITH FORMATION OF A DOUBLET AND A 

HOLE 

Let us consider the decay of an exciton (for 
example, a left-hand one) at the site of an im
purity. We locate the origin of coordinates at this 
site. F ron. (5 .6) it follows that the energy opera
tor of the perturbation K has the form 

K=2-'i,r, Uq,q'oxq'YJ<P;j;. (6.1) 

Let U ( r) be the perturbing potential of the im
purity; then 

U qtq'o = ~ 9; (r- Rq) U (r) 9o (r- R".) d-r. (6.2) 

Substituting (6.2) into (6.1) and going over to 
n.omentum space we get 

(6.3) 

where Cf'l and Cf'2 are the aton.ic functions in mo
menturr. space, and U is the Fourier con.ponent of 
the potential, determined by the expression 

u (j k, + k~- k, -- l':b !) (6.4) 

= 1 / Vo ~ U (i r J) ei<k...-t-k:,-k~-,.b)r d-::, 

where V 0 is the volurr.e associated with one atom. 
The transition probability can be con,puted ac

cording to the familiar forn,ula 

w = (2.-: I h)~ i K!.p 12 " (Ei.- £~) d(L, (6.5) 

where K AJl is the n,atrix element of the operator 

(6.3) for the transition between states A .... J1 (ex
citon -> doublet plus hole), and the integration is 

carried out over all possible finite states. We 
note that in the case at hand, the law of conserva
ti?n of rr.omentum is not satisfied, since the decay 
of the exciton takes place in the force field of the 
impurity. The law of conservation of energy is 
taken into account by the o-function in Eq. (6.5). 

Calculating the values of the matrix elements of 
the operator !) ex w-p ct>; 'stipulating that there is 

one exciton present and paying attention to the 
fact that the average occupation number of holes 
and doublets is << 1, we get from Eq. (6.5) 

w = (::: jt.N) ~I 91 (kr;- ko:- ;;:b) i3! '?o (k,) 12 (6.6) 

X U2 (i k, + k~- k, - .-;b i) 

X o (£ e- s;,- s,) dkodk" 
I-' , ' 

where E · th 't e IS e exc1 on energy, E/3 and Ey, re-

spectively, the energy of the hole and the doublet. 

Changing to spherical coordinates in this expre~
sion, and carrying out the integration over angles, 
we get 

"r;+x 
X ~ J:Pt(Y)/ 2 

lhf3-xr 
~ zU2 (z) dz dy dk;i, 

1<.-.vl 

(6.7) 

In Eq. (6. 7) cr1 ( y) represents only the radial part 

of the wave functions; an averaging has been car
ried out over the angular part. 

If there are few sites of the impurity in the crys
tal, then the action of each on the excitons will be 
the same as though there were no other impurity 
sites. The probability of decay of an exciton in 
such a crystal into a doublet and a hole will be 
equal to w = N W, where N. is the nun,ber of 

Iffi'P Imp 

impurity sites in the crystal. Frorr. (6.7) it follows 
that IV"' 1/N, therefore, w "'N. /N. In this 

rmp 

way the probability of decay of an exciton in the 
crystal into a doublet and a hole is directly pro
portional to the concentration of impurities. Frun; 
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this it follows that the photoconductivity of an 
atomic semiconductor, caused by an impurity, is 
directly proportional to the concentration of int
purities. If the probability of spontaneous d~cay 
of an exciton is small, then we shall have prm
cipall y impurity photocon~uctivity. 

The effective cross sectwn can be con,puted by 
the formula given by Sokolov and Ivanenko 4 : 

(6.8) 

where v is the velocity of the exciton. Using the 
e b . 

law of conservation of momentun,, we o tam 

Consequently, 

47t3f.td fLeCV 

1i8 x.tlEeN 

"' hr:.+x h~+Y 

(6.9) 

(6 .10) 

x~kr:.Jrto(k~)/2 ~ /rh(Y)I2 ~ zU2 (z)dzdydk 13 • 

0 lhr:.--x I h~-YI 

As an example of the application of Eq. (6.10), 
we consider the decay of an exciton at an empty 
site. In this case the perturbing potential can be 
set equal to the potential of an isolated atom (with 
the opposite sign). Therefore, we put 

As 
J...p 
cr(cm2) 

109 

3><10 9 

4XJ0-16 

'lQ9 

2x'f09 
:Jxlo-Is 

This shows that a is very sensitive to the be
havior of the wave functions and that for an ac
tual calculation of a it is necessary to know the 
exact atomic wave functions in momentum space. 

The existing methods for computing atomic func
tions (the Hartley-F ock n,ethod, the variational 
ntethod) allow one to con,pute the atomic functions 
in configuration space. The analogous problem in 
mon,entum space is still not solved; therefore, we 
cannot exhibit numerical values for a for concrete 
cases. However, the result obtained shows that the 
exciton can decay at an impurity with formation of 
charge carriers even in the case when the site is 
empty, i.e., does not contain bound charges in it. 

7. KINETICS OF PHOTOCONDUCTIVITY 

As was explained in Sees. 5 and 6, the third
order terms in the Hamiltonian of the polar model 

ze2 2 \ p (r") dv" 
u (r) = r- e ~ lr" -rl ' (6.11) 

where p ( r) is the density of the distribution of 
electrons. Let us take 

? (r) = (zis/8;:) e-Tr . (6.12) 

For the rest of the calculation it is necessary 
to choose definite wave functions. For the evalua
tion we choose for cp0 the wave function of a hydro
gen atom in the 2s state, and for cp 1 that of the 
3p state 5 . The wave function cp1 was averaged 
over angles in the following way. Since p-states 
are triply degenerate, cri can be set equal to 

I'" I~- l'i (,',,<I> '2 +I' ,<2> j2 + i c:;<3l i':l) (6.13) 
L 7"1 -- ;j -:' 1 I 't 1 I I J ' 

where 't~' cri' cp~ are the three actual functions for 

the p-state. 
Substituting the wave functions and (6.11) into 

(6.10) we obtain 
()(4 (rx2 + x2) 

(()("+ y2-j-x~)" . (6.14) 

Determination of the numerical value shows that 
a changes within unusually wide linlits in its de
pendence on the choice of the effective charges 
for the S- and p-states. The results of such an 
evaluation, as the parameters A and A are 

p s 

changed, are as follows: 

5x108 

2>d09 

2. 5x10-14 

5.x108 

:)XJ09 
3x10-15 

of an atomic semiconductor determine the proba
bilities of different processes of transformation of 
certain quasi-particles into others. Furthermore, the 
theory permits us to calculate the probability of 
formation of excitons under the action of incident 
light. This gives the probability, knowing the 
matrix elements of the corresponding transitions, 
of writing down the kinetic equations6 , but in the 
present work the interaction of quasi-particles with 
phonons will not be considered. Moreover, this 
interaction is essential for the study of kinetics 
in semiconductors, since without consideration of 
the recombination of holes and doublets with radia
tion of phonons it is impossible to obtain reason
able equations of kinetics, leading to a correct 
value of the number of quasi-particles in stationary 
states. Therefore, the equations of n;acrokineties 
for holes and doublets are supplemented by 



490 V. M. KONDRATENKO 

phenomenological terms taking into account the 
thermal recombination of holes and doublets. 

It is postulated that the energy of excitation of 
excitons is much larger than the excitation energy 
of holes and doublets; thus in the first approxima
tion it is possible to assume that, in contrast with 
doublets and holes thermal excitons do not exist. 

The equations of' macrokinetics have the form 

With increasing temperature the nun,her of thermal 
holes M increases and, consequently, the thermal 
conductfvity increases, while the stationary value 
of the photoconductivity will decrease with increase 
of temperature, 

1'1a ~ e"Ei2hT 
stat (7.6) 

This results from the fact that with the increase of 
dM' 1 dt = I,Q- 2rMoM', (7.1) temperature the recombination of photo-holes with 

doublets (and photo-doublets with holes) proceeds 
more intensively. 

dQ I dt = 2w0n" + (W0 + 1..) Q, 

where Jf' is the number of L J, photo-holes ~f photo
doublets, Q of excitons (right- and left-hand), ,';1 0 

of thermal holes, y the recombination coefficient 
of holes and doublets, n"' the number of photons, 
w 0 the absorption coefficient of a photon, A the 
coefficient of the probability of decay of an ex
citon into a doublet and a hole (at an impurity 
atom or spontaneously). 

Solving the system of Eqs. (7 .l) we obtain 

[ 
e-(w,+t.) t 

M' =M~tat 1 ~ (Wo +A)/ 2yMo- 1 
(7.2) 

+ 2yM0 /e;:':tl-) -1 J, 
L' = M', Q =Qstat[l-e-(w,+;>.) fJ, 

(7.3) 

The dependence on temperature enters only into 

M0 , M0 "' e-1'1E!ZkT, where 1"1.£ is the energy gap 

between the currentless states of the crystal and 
the conduction hand. From (7 .2) it follows that the 
number of excitons in the crystal, as one was led 
to expect, does not depend on temperature. As re
rards the kinetics of photo-holes, the following 
limiting cases can occur: 

(7.4) 

then M' = M' ( 1 _ e- 2YM,t) 
stat , 

(7.5) 

then M' = ,!Js,tat(l- e-(w,+t.> t). 

As was shown by Zhuze and Hyvkin 7, the 

stationary concentration of carriers of photocurrent 
can he represented in the forn, of a product of a 
set of parameters 

(7.7) 

where Tis the lifetime of the carriers of photo
current, k the coefficient of absorption, I the in
tensity of the light, and {3 the coefficient of the 
photoeffect which, if I is measured by the number 
of quanta falling per second on a unit surface area, 
has the sense of the "quantum yield". 

The photoconductivity is determined by the 
formula 

(7.8) 

where e is the electronic charge, u is the mobility 
of the carriers of photocurrent. The number of 
quanta absorbed per second in a unit volume is 
equal to ki = 2w 0n"'; therefore, 

(7.9) 

From Eqs. (7.3) and (7.9) we obtain for the quantum 
yield 

(7 .10) 

Let us consider two limiting cases: 

a) W 0 +A» 2yM0 , then from (7.4) and (7.10)we 
have 

h) w 0 +A<< 2yM0 , then from (7.5) and (7.10) we 
have 

Let us now write out the temperature depend-
ence of 1'1a , T, and {3 in both limiting cases: 

stat 
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) b. __ et1E/2hT 't---' e"'EI2kT, P. ~ const ·, 
~ 0 stat <) ' ~ 
h) A ~ e"EI~kT -: ~ const, P. ~ et1Ei2kT 

o.a stat ' V 

All the reasoning carried out up to this time is 
valid for sufficiently high temperatures ( M '<<M 0 .). 

As regards the region of low temperatures,here it is 
already impossible to assume ill'<< M0 • This 

introduces changes into the kinetic equations. In 
particular, the first of the Eqs. (7.1) ceases to be 
linear and takes the form 

dM'/ dt = I,Q- 2riVI0M'- -1M'2. (7.11) 

The solution of this equation can be expressed in 
Bessel functions of order 

- _2_ [ 2M2+ 2~ Wona+"]'l• 
p - Wo +A "[ o I Wo +A . 

Naturally it is difficult to say anything definite 
about the behavior of the solution; therefore, in the 
case of low temperatures, we have limited our
selves to finding the stationary value of !l1 '. In 
this case 

Since M' rv b.a we obtained the result that 
stat stat' 

at low temperatures the stationary photoconductivity 

does not depend on the temperature. 
For the limiting case b) we know no experimental 

data supporting the temperature variation ofT and f3 
in this case. It is possible that this case is not 

realized. 
If one compares the temperature variation of 

b.astat' Tand f3 in case a) with experimental 

data for copper oxide, obtained by Zhuze and 

Ryvkin 8 , in the region of sufficiently high 
temperatures ( T > -40° ) one gets complete agree-
ment with the temperature variation of b.a , T and stat 
f3 obtained expetimentally. As regards the region 
of low temperatures, the temperature variation of 
b.a agrees weLl with the experimental data. To 

stat 
say anything definite about the temperature varia-
tion of the lifetime T and the quantun> yield f3 in 
the case of low temperatures is hardly possible; 
but since the predictions of the present theory 
differ from those of the theory of Zhuze and Hyv
kin, it is hardly possible to obtain the same temper
ature dependence for T and (3 as obtained by them. 
In the first place, these authors consider that the 
photoconductivity renmins linear even at low 
temperatures; in the second place, they consider 

that the decay of an exciton takes place at defects, 
in which are found electrons rerwved fron. the 
normal band, whereby upon the decay of an ex
citon the electron is thrown back from the defect 
to the conduction hand9. Thus the number of 
"effective" decay centers depends on the tempera
ture, and their states does not change upon the 
decay of an exciton (empty sites). Apparently 

this difference must lead to another temperature 
dependence of the quantum yield in the region of 
low temperatures. 

\Ve must also mention that copper oxide does not 
belong to the atomic semiconductors which are 
considered in the present theory; however, it is 
entirely possible that the dependences proposed 
by Zhuze and Hyvkin are of general character. 

Therefore, at sufficiently high temperatures, the 
expression for the stationary photoconductivity 
created by holes has the form 

(7.13) 

At low temperatures the formula 

b.a stat= (J,kf)'J, eu; 1•1, (wo + /,)'12 (7.14) 

holds. 
Analogous expressions can also he written down 

for the photoconductivity caused by doublets. 
However, the hole photocurrent can have a differ
ent value from that of the doublet photocurrent, if 
there is a different mobility for doublets and for 
holes. 
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