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quency of 58 me and acceleration time of 10,000 
11-sec. Preliminary investigation shows the azi­
muthal spread of the electron hunch at the end of 

the cycle is 100 ± 10°. 
A detailed description of the method and re­

sults of this experiment will be published at a 
later date. 

The author expresses his sincere gratitude to 
Prof. P. A. Cerenkov for valuable discussions. 
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AS is well known, Feynman 1, using a wave 
function of a special form, has obtai ned an ex­

pression for the spectrum of the elementary ex­
citations in liquid He 4 • A hydrodynamical deriva­
tion of this formula is presented below. 

We shall begin with the Hamiltonian for a quan­

tum liquid in the form 2 

A 1 \ A A A 

H = Z J mvnvd-r + H 1 [n], (1) 

where n is the number of atoms per unit volume 
and H 1 [ n] is the velocity-independent part of the 

Hamiltonian. We shall assume it to be a function 
of n. We set n = rr + on and expand li in terms of 

the second order in on. The first-order term 

drops out and we obtain 

if= Hl[nl+ m; ~ v2d-r + ~ <p(r, r') anan'd-rd-r',, (2) 

'\ 

where Cf' is the secondfunctional derivative of l1 1 

with respect ton. Transforming now to Fourier 

components 

and taking into account the equation of continuity 

in the form 

as well as the fact that Cf' depends only upon I r 

- r 'I, we obtain 

(3) 

, , - "" (m I nk I 2 1 ) H = H 1 [n] + L..l + "2 q>k Ink 1 2V · (4) 
k 2nk2 

This expression has the form of a sum of the Ham­
iltonians of oscillators having frequencies: 

(5) 

For the determination of cpk we note that the 

average value of the potential energy of an oscilla­
tor in the ground state is equal to lr w/ 4, 

whence 

(6) 

As is well known, however, s ( k) = Ink 12 In is 

the Fourier component of the correlation function 
for the atoms of a liquid, which can he determined 
from diffraction experiments. Substituting Cf'k from 

(6) into (5), we find for the energy of excitation 

E (k) = "hw (k) = "fi2k2j2mS (k), 

which agrees with Feynman's result. 
In conclusion, I would like to express my thanks 

to L. D. Landau for his advice. 

1 R. P. Feynman, Phys, Rev. 94, 262 (1954). 
2 L. D. Landau, J, Exptl. Theoret. Phys. (U.S.S.R.) 

11, 592 (1941). 

Translated by S. D. Elliott 
112 



440 LETTERS TO THE EDITOR 

The Effect of a Transverse Magnetic 
Field on the Thermal Conductivity of 

Metals 

z. IA. EVSEEV 

Donetz Industrial Institute, Stalino 
(Submitted to JETP editor February 26, 19.S6) 

J. Exptl. Theoret. Phys. ( U. S.S.R) 31, 331 
(August, 1956) 

L ET us consider a metal, in which there is a 
heat flow Q = Q x and a magnetic field H =H x • 

For the calculation of the coefficient of thermal 
conductivity we use the model of Sommerfeld, 1 

according to which the flow depending on the motion 
of electrons under the action of the temperature 
gradient is set equal to zero. Accordingly, 2 

3n \ 3 (1) 
Oy = 2vs J YJfv d<. 

and analogously for I and Q . Here (-e) is the y ·X 

charge on the electron, m is the mass of the elec­
tron, vis the velocity, ,;and n are the components 
of the velocity along the x and y axes, ( is the 
kinetic energy of the electron. The distribution 
function is taken to have the form 

f = fo + ~Xx + TJXy, (2) 

where {0 is the Fermi distribution function, and 
the functions Xx and X Y (found with the aid of 
the kinetic equation, in which the term taking into 
account collisions, was derived by Lorentz 3 ) equal: 

(3) 

Xy = -l (!1q + /2) I v (1 + q2). 

Here l is the length of the mean free path of the 
electron, and the rest ofthe variables are defined 
as follows: 

q = (J)i I v = (eH I me) l I v; 

/1 = atol ax -e£xaf0 ! a<.; 

/2 =a to I ay- eEyafo I a .. ; 

(4) 

Ex and E Y are the components of the electric 

field resulting from the motion of the electrons 
under the action of the temperature gradient. 

Calculation shows that the dependence of l 
on v for the present problem is immaterial, because 
the terms containing the derivative of l with respect 

to v , are small and do not enter into the ex­
pression for the coefficient foc thermal conductivity x. 

Making the usual calculation for the coefficient 

of thermal conductivity X= -Q X I ar ;ax (in the 

present problem I =l = 0, 0 = 0) with accuracy 
X y . y 

to the terms '"'" (k T fr) 3 (7 is the Fermi level), 
we obtain 

where x 0 = rr 2nlk2 T / 3mv is the coefficient of 

thermal conductivity in the absence of a magnetic 
field. 

Approximate calculation shows that formula (5) 
gives a decrease in the thermal conductivity of 
less than 0.01% of x 0 in a field of 10,000 Oersteds. 

It can be shown that consideration of the effect 
is necessary formetals of the type ofBi which have 
a small number of conduction electrons. 

In conclusion I must thank K. B. Tolpygo for a 
number of suggestions and E. I. Rashba forcertain 
advice in the course of carrying out the work. 
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I N this note the motion of the photon is treated as 
a random process under the following very general 

assumptions: the medium is isotropic; its proper­
ties may be functions of time and space; the photon 
may be scattered, absorbed by an atom and reemitted, 
or absorbed in a collision of the second kind; the 
polarization of the radiation and the motion of the 
atom excited by a photon are not taken into ac­
count. 

We begin with the function 

f~: (rl, YJ1, v1, t1; r2, YJ2, v2, t2) dV 2 dTJ 2 dv2, 


