<sup>3</sup> A. Pais and R. Serber, Phys. Rev. 99, 1551 (1955).

```
<sup>4</sup> O. Kofoed-Hansen, Phil. Mag. 42, 1411 (1951).
```

<sup>5</sup> J. Grussard, *et al.*, Nuovo Cimento 3, 731 (1956).

<sup>6</sup> G. Gosta and N. Dellaporta, Nuovo Cimento 2, 519 (1955).

<sup>7</sup> K. Iwata, et al., Progr. Theor. Phys. 13, 19 (1955).

Translated by C. R. Lubitz 107

## Measurement of the Lifetimes of K-Mesons

M.IA. BALATS, P.I. LEBEDEV AND IU.V. OBUKHOV (Submitted to JETP editor June 7, 1956)
J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 531-533 (September, 1956)

T HE measurement of the mean life of charged Kmesons from cosmic radiation has been carried out at sea level, using scintillation counters and a high-speed oscillograph<sup>1</sup>. A charged unstable particle formed in a slab of lead A (Fig. 1) passed through counters  $C_1$  and  $C_2$ , and reached counter  $C_1$  inside which was a brass absorber (10 gm/cm<sup>2</sup>) Counters  $C_3$  and  $C'_3$  then registered the decay



FIG. 1. Schematic diagram of set-up.

products of the particles which came to rest in C. The data on the liquid scintialltion counters are collected below in a Table.

| TABLE                                                                                          |                                                    |                  |                               |                               |                     |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------|-------------------------------|-------------------------------|---------------------|--|
| Counter                                                                                        | Area<br>cm <sup>2</sup>                            | Thickness,<br>cm | Solvent                       | Conc. of<br>Terphenyl,<br>g/1 | Amount of<br>FEU-19 |  |
| $\begin{array}{c} C_{1}, \ C_{2}, \ C_{3}, \ C_{3}^{'} \\ C_{4}, \ C_{4}^{'} \\ C \end{array}$ | $10 \times 20$<br>$10 \times 26$<br>$10 \times 20$ | 2<br>2<br>10     | Toulene<br>Benzene<br>Benzene | 3.5<br>1.4<br>0.9             | 1<br>2<br>1         |  |

Pulses from the photomultipliers of the counters  $C_1$ ,  $C_2$ ,  $C_3$  and  $C'_3$  were amplified, time-formed and fed to a coincidence counter<sup>2</sup>. The amplifier band width was 210 mc, the amplification factor  $\sim 6$ . In channels  $C_1$  and  $C_2$  pulses of length 4  $\times 10^{-8}$  sec were formed, in channels  $C_3$  and  $C'_3$ , of length  $6 \times 10^{-9}$  sec. The resolution curve of the coincidence circuit is given in Fig. 2. Triple coincidences  $C_1 + C_2 + C_3$  or  $C_1 + C_2 + C'_3$  triggered the oscilloscope and pulses coming from counter C were fed to the input of the vertical deflection amplifier. They were then photographed





on the oscilloscope screen. The duration of the sweep was  $1.3 \times 10^{-7}$  sec, and the minimum rise in the amplifier  $2.5 \times 10^{-9}$  sec. The precision of measuring the time between impulses was determined basically by the time dispersion of the photomultiplier belonging to counter C. To reduce this dispersion, we used a specially selected multiplier, type FEU-19. The exposed central part of the photocathode measured  $5 \times 12$  mm, and the overall voltage was 4500 v.

The experimental error, connected with the time dispersion of a given FEU-19 tube, did not exceed  $1.6 \times 10^{-9}$  sec. In the photomultiplier there sometimes occurred a secondary spurious impulse following the basic impulse, but not connected with the passage of a particle through *C*. Such cases could imitate the decay of a *K*-meson when the set-up was triggered by shower particles. In view of this, it was necessary to reduce to a minimum the number of times the apparatus was triggered by showers.

In the first phase of this work, this was accomplished by including  $C_4$  and  $C'_4$  in anticoincidence with  $C_1 + C_2 + C_3$  or  $C_1 + C_2 + C'_3$ . The efficiency of this method was 96%. The presence of a group of Geiger-Muller counters covering  $C_4$  and  $C'_4$  further reduced the number of times the system was triggered by showers. It is necessary to note that such a system excludes *K*mesons accompanied by wide showers. Later on, the anticoincidence counters were replaced by a system of delayed coincidences, by introducing into channels  $C_1$  and  $C_2$  additional delay cables  $(1.4 \times 10^{-8} \text{ sec})$ .

From the resolution curve of Fig. 2 it can be seen that the probability of triggering the system by the simultaneous passage of particles through  $C_1, C_2, C_3 (C'_3)$  did not exceed 0.02.

In order to take account of the secondary photomultiplier impulses, and the time displacement between pulses which resulted from the different flight times of two related particles, we measured the distribution of time intervals between pulses in counter C. In phase I of the work, this was done by including  $C_4$  and  $C'_4$  in anticoincidence, while in phase II, we disconnected the additional delay cables. In such control investigations the number of delays in counter C was negligibly small. The results of these control experiments were included in the interpretation of the results.

The smallest energy of  $\mu$ -meson decay which could also trigger the set-up was 25 mev. Therefore, we excluded cases of  $\pi \rightarrow \mu + \nu$ . The  $\mu \rightarrow e$  +  $2\nu$  decay could trigger the set-up, but inview of the fact that the resolution of the coincidence circuit was  $4 \times 10^{-8}$  sec, the probability of such an event was sufficiently small.

From among atotal of 1600 cases, 64 were observed with a decay in an interval  $10^{-8} - 4 \times 10^{-8}$  sec. The integral distribution of decay times is



FIG. 3. Integral spectrum of K-meson decay time.

drawn in Fig. 3. It yields a mean lifetime of Kmesons of  $(9.5 \pm 2.0) \times 10^{-9}$  sec, assuming a single-exponent decay. This result is in accord with Refs. 3-5.

<sup>1</sup> Balats, Lebedev and Obukhov, P.T.E. (in press).

<sup>3</sup> L. Mezzetti and J. W. Keuffel, Phys. Rev. **95**, 858 (1954).

<sup>4</sup> K. W. Robinson, Phys. Rev. 99, 1606 (1955).

<sup>5</sup> V. Fitch and R. Motley, Phys. Rev. 101, 496 (1956).

Translated by C. R. Lubitz 109

## A Method of Investigation of Radial-Phase Oscillations of Electrons in a Synchrotron

## Iu. M. Ado

P. N. Lebedev Physical Institute Academy of Sciences, USSR (Submitted to JETP editor J une 8, 1956) J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 533-534 (September, 1956)

T is well known that in electron accelerators of synchrotron type, the accelerating electrons fill

<sup>&</sup>lt;sup>2</sup> R. L. Garwin, Rev. Sci. Instr. 24, 618 (1953).

## ERRATA TO VOLUME 4

reads

should read

| P. 218, column 2, Eq. (10)                | $\cdots \xi(\sqrt{3}+2)(2-\sqrt{3})$                      | $\cdots \xi^{(\sqrt{2}+2)/(2-\sqrt{3})}\cdots$                                                    |
|-------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| P. 219, column 1, Eq. (11)                | $\ldots (t \xi)^{\sqrt{3/2}} \ldots$                      | $\ldots (t\xi)]^{\sqrt{3/2}}\ldots$                                                               |
| P. 219, column 1, Eq. (12)                | $\gamma^2 = \rho^{2/3}$                                   | $y^2 - \rho^{2/3} >> 1$                                                                           |
| P. 223, column 1, Eq. (45)                | $\dots (E_{0^{\mu^{3/4}}})^{\sqrt{3/4}}$                  | $\dots (E_0 \mu^{3/4})^{\sqrt{3}/4}$                                                              |
| P. 223, column 2, Eq. (46)                | $\dots$ $\mu^{3\sqrt{3/4}}$ $\dots$                       | $\dots \mu^{3\sqrt{3/4}}$                                                                         |
| P. 225, column 1, 3 lines above Eq. (1.1) | transversality                                            | cross section                                                                                     |
| P. 225, column 1, 3 lines above Eq. (1.2) | transversality                                            | cross section                                                                                     |
| P. 256, column 1, Eq. (37)                | $\cdots \frac{55\sqrt{3}}{48} \cdots$                     | $\ldots \frac{55}{\sqrt{3}}_{48}$                                                                 |
| P. 289, column 2, Eq. (2)                 | $I = \sum_{n}$                                            | $\frac{1}{2n+1} A_n \sum_{\nu=-n}^{n} \frac{1}{1+i\omega\tau} Y_{n\nu}^{(n_1)} Y_{n\nu}^{(n_2)} $ |
| P. 377, column 1, last line               | $\delta_{35} = \eta - 21 \times \eta^5$                   | $\delta_{35} - 21 \eta^5$                                                                         |
| P. 4367                                   | Figures 2 and 3 should be exchan                          | nged.                                                                                             |
| P. 449, column 1, last Eq.                | Υ <sub>lm φσ α</sub>                                      | $\ldots Y_{lm} \varphi_{\sigma \alpha}$                                                           |
| P. 449, column 2, Eq. (12)                | ₩ (l,j,σ1; j)                                             | ₩ ( <i>l</i> , <i>j</i> , σ 1; σ <i>j</i> )                                                       |
| P. 451, column 1, Eq. (7)                 | $\dots D_{\alpha\beta}^{(1)}$ (p, 0, $\lambda'\lambda$ )= | $\dots D_{\alpha \beta}^{(1)} (p, \omega_0, \lambda', \lambda) = \dots$                           |
| P. 541, column 1, Eq. (28)                | M <sup>* monex</sup><br>++                                | M <sup>*monex</sup>                                                                               |
| P. 543, column 2, Eq. (35)                | $\cdots \int_{\rho^2 - \tau^2 + l_0^2}$                   | $\cdots \int \cdots \\ \rho^2 < \tau^2 + l_0^2$                                                   |