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The intensity of the diffuse scattering of x-rays by mixed crystals has been determined 
by means of a phenomenological treatment. Thermodynamic quantities which may be found 
from other experiments appear in the expressions for the background intensity. Character­
istic features of the scattering in the neighborhood of points of phase transitions of the 
second kind and of critical points on the dissociation curve have been investigated, and 
also the scattering byweak, by ideal and by almost completely ordered solid solutions 
has been examined. 

X-RAYS scattered by a crystal* form sharp lines 

on an x-ray photograph corresponding to defi­
nite conditions of reflection, and also give rise to 
a diffuse background. Diffuse scattering of waves 
by a solid, which is not accompanied by a change 
in wavelength, is associated with some sort of 
deviations from ideal periodicity of the crystal: 

either thermal vibrations or static deviations from 

periodicity. In the present article we shall not 

* In what follows we shall examine the scattering of 
x-rays. However, all the results apply equally well to 
neutron scattering (not taking into account the back-
ground which is connected with the presence of isotopes 
and with magnetic scattering). In such a case the atomic 
scattering factors should be interpreted as the neutron 
scattering factors averaged over the isotopes. The re­
sults given below are also applicable in the study of 
scattering of other types of waves, provided the Born 
approximation is applicable and the scattering centers 
are situated at the lattice points. Thus, one may study 
the scattering of electrons, and the scattering of elastic 
waves by the fluctuations in the isotopic composition 
in a solution of isotopes, In an analogous way one may 
study the scattering of sound waves in the more general 
case of mixed crystals when not only the masses of the 
atoms are different, but also the forces acting between 
them. 

take into account effects related to thermal and 
zero-point vibrations of the atom and also to Comp­
ton scattering. It is also assumed that all the 
aton,s of the solid solution are situated exactly at 

the lattice points. The neglect of the geometric 

imperfections of the lattice introduced by these as­

sumptions is approximately justified if the sizes of 
the various atoms of the solution differ little from 
each other, while the imperfections associated with 
a plastic deformation have been removed. Thus, 
the only cause for a deviation from periodicity of 

the crystal which is taken into account in this 
paper is the more or less random distribution of the 
atoms of the solution among the various lattice 
points. Decause of the unequal scattering proper­
ties of the various kinds of atorr;s, this also leads 
to diffuse scattering. 

An investigation of the scattering of x-rays pre­

sents a .more complicated problen, than the scatter­
ing of light, since the wavelengths of x-rays are 

of the same order of n,agnitude as the interatomic 

distances in the crystal. The situation is simpli­

fied considerably if the direction of the scattered 
wave, which corresponds to diffuse scattering, is 
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close to the direction of the coherent wave corre­
sponding to some particular condition for interfer­
ence, or which is close to the direction of the in"­
cident beam. In such a case the differences in 
phase of waves scattered by different atoms begin 
to deviate appreciably from a value which is an in­
tegral multiple of rr only if the distances between 

the atoms are much larger than the lattice constant. 
Therefore, a phenomenological examination of scat­
tering becomes possible for the investigation of 
background near the lines on an x-ray photograph 
and near the incident beam. In such an investiga­
tion the crystal is regarded as a purely periodic 
structure which consists of effective atoms on top 
of which are superimposed fluctuations in the com­
position and in the degree of long range order. The 
periodic structure guarantees the production of the 
coherent wave, while the fluctuations give rise to 
the diffuse scattering. In calculating the intensity 
of the background near the lines on the x-ray photo­
graph only those fluctuations are important which 
are spread over a large numherof lattice constants. 
The probabilities of such fluctuations, and conse­
quently the intensity of the scattered radiation, may 
he expressed in terms of certain thermodynamic 
quantities without using a specific model of the 
solution. 

A phenomenological investigation of the scatter­
ing of x-rays by crystals was first carried out by 
Landau 1 who investigated the scattering in the 
neighborhood of superstructure lines at a tempera­
ture close to the temperature of a phase transition of 
the second kind. In this work it was assumed that 
the diffuse scattering is brought about by fluctua­
tions in the degree of long range order. The re­
sults of Landau are applicable only to those crys­
tals for which only fluctuations in the long range 
order are significant (for example, in the case of 
orientational ordering). In mixed crystals, and in 
particular in alloys, in addition to fluctuations in 
the long range order, there exist also fluctuations 
in composition. Since they are not statistically 
independent one should, in determining the proba­
bility of fluctuations, consider simultaneously the 
deviations from equilibrium values both of the com­
position and of the degree of long range order. 
Using a method analogous to thatdeve loped by 
Landau 1 we shall determine, by calculating such 
probabilities, the intensity of the background near 
the superstructural and the structural lines, and 
also for small scattering angles. 

Calculations are carried out for those cases in 
which expressions for the thermodynamic potential 
II> of the mixed crystal are known. Thus, we shall 

examine the scattering in the neighborhood of the 
points of ordering, which takes place as a phase 
transition of the second kind, •~ hen one may use 
Landau's thermodynamic theory. In a similar 
manner one may obtain an expression for <P near 
the critical point on the dissociation curve. In 
addition, an investigation is made of the scattering 
by ideal, by weak, and by almost completely ordered 
solutions where the expressions for <I> are also 
known as functions of the composition and of the 
degree of ordering. 

I. GENERAL EXPRESSIONS FOR THE INTENSITY OF 
THE BACKGROUND NEAR LINES ON AN X-RAY 

PHOTOGRAPH 

We shall examine a binary solid solution A-B. 
In the disordered state it has a crystal lattice of 
the Bravais type; the probabilities of the various 
lattice points being occupied by atoms of a given 
kind are all the same, and are.equal to the corre­
sponding atomic concentrations C A and c 8 . If the 

solution goes over into an ordered state, then its 
lattice points are subdivided into several different 
kinds, and the probabilities of the different types 
of lattice points being occupied are no longer the 
same. In what follows we shall restrict ourselves 
to the case when in the ordered state the crystal 
lattice is subdivided into points of only two types, 
with the number of points of the first and the 
second kinds being equal, and with the amplitudes 
of the radiation scattered by atoms situated at lat­
tice points of either kind and leading to the forma­
tion of superstructure lines also being equal. In 
this case the probabilities of the lattice points 
being occupied by atoms A and B may be speci­
fied b2::_ means of a single degree of long range 

order T/ : 

P2) = CA + 1/2;; p~) = ~ - 1/2-:q; 
(1) - - (2) - -

Ps = Cs - 1/2 'Yj; Ps = cs+ 1/ 2'YJ. 

In spite of the limitations introduced above, this 
procedure will apparently include all the ordered 
solutions known at present that correspond tothe 
stoichiometric composition AB, and all the dis­
ordered solutions. 

As is well known, the amplitude of the mono­
chromatic radiation scattered by a single crystal 
may be represented within the framework of the 
kinematic scattering theory in the form 

a= ~ p (r) ei(k.-k,. r) d't. (l) 
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Ilere a is expressed in electronic units, k 1 and k2 

are propagation vectors of the incident and the 
scattered waves, p ( r) is the density of the elec­
tronic charge in the crystal divided by the charge 
of the electron. 

The calculation of the Fourier component of 
p ( r) which enters Eq. (l) is considerably simpli­
fied if one makes use of the assumption made above 
that all the atoms are situated exactly at the lat­
tice points of an ideally periodic lattice, and if 
one also assumes that the distribution of the 
charge density of a given atom does not depend on 
the kind of atoms surrounding it, on the composi­
tion, or on the degree of order. The latter assun;p­
tion holds with a sufficient degree of accuracy for 
aln,ost all the atoms, with the exception of the 
lightest ones. The probability density p ( r) in a 
mixed crystal is a function of coordinates which 
has an extremely complicated variation in space. 
However, since the exponential factor (l) remains 
constant in the plane perpendicular to k2 - k 1, 

the function p ( r) can be replaced for integration 
purposes by a function which is averaged over the 
different kinds of atoms in the plane referred to 
above. If one takes into account the simplifying 
assumptions made above, then this averaged func­
tion will have the following form: 

p (r) = CAPA (r) + CBPB (r) + 'fjp' (r). (2) 

Here C A, C 8 and Tf denote the atomic concentra­

tion of the atoms A and B and the degree of long 
range order in the plane under consideration the 
functions P A ( r) and p8 (r) have a symmetr; 

identical with the symmetry of the crystal lattice, 
while p '( r) has the symmetry of the ordered crys­
tal which is lower than the symmetry of the lattice; 
PA, p8 and p' do not depend on C A and TJ· Be-

cause of the fluctuations of composition and order 

present in the crystal, the values of the quantities 

C A, c8 and TJ, corresponding to different planes, 

differ from the values C A, c 8 and 7] averaged 

over the whole crystal, and are functions of the 
coordinate specifying the plane. 

The periodic functions PA (r ), p8 (r) and p '(r) 

may be expanded in Fourier series: 

PA (r) = ~ '·At" eiKi r ·, PB (r) - ~ ) eiKi r. 
~ - LJ •Bi , 

i 
(3) 

Here K. and K: are 2rr times the lattice vectors of 
' 1 

lattices which are respectively reciprocal to the lattices 
of the disordered and the ordered crystal, while in the 
expansion of p '( r ), those terms are missing for 
which K ~ coincides with any one of the K.. Sub-

1 ' 

stituting Eqs. (2) and (3) into (l) and breaking up 
the quantities C A, C 8 and TJ into their average val-

ues plus a fluctuating part we whall obtain 

(4) 

a= 8TC3 ~ (cA '·Ai + Cs ).Bi) () (qi) + 8TC3~ ~ ).~ () (qj) 
i j 

+ ~ U·Ai- ).Bi) ~ ~CA eiq; r d't + ~ ).~ ~ ~'fjeiq~ r d't; 
! 1 

q; = K + k2 - k1; q~ = K?J+ k2 -- k1• 

Here o ( q) denotes the product of three o-functions 
for the individual components of the vector, and 
it has been taken into account that~ C 8 =-~CA. 

The intensity of the scattered radiation is propor­
tional to the square of the amplitude a. All the 
cross terms in the expression for a 2 drop out after 
statistical averaging. The square of the o-func­
tion defined for a finite volume V (the crystal 
volume) is equal to this o-function multiplied by 
V /8rr 3 • Below we shall calculate the intensity of 
scattering near the principal or the superstructure 
lines on an x-ray photograph. In this calculation 

one of the quantities qi or q; is small, and in the 

expression for a 2 one may keep the square of only 
that Fourier component of ~ C A or of Tf, for which 
the corresponding q is small. As may be easily 
seen, the squares of all the other Fourier com­
ponents are in order of magnitude smaller by a 
factor q 2a~ (where a 0 is the lattice constant) and 

are not taken into account in what follows. Noting 
further that 

I.Ai = (N jV) fA; 

/,Bi = (N /V) fs; ).~ = (N /2V) (fA- fB) 

( N is the total number of all the lattice points, fA 

and {8 are the atomic scattering factors of atoms 
A or B corresponding to the given angle of scatter­
ing), we shall find that the intensity of the scat­
tered radiation, expressed in electronic units, near 
the principal line which corresponds to the K . th 
Fourier component of the electron density is ~qual 
to 
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In the same units, the intE'Jinsity of radiation in the 
neighborhood of the superstructure line which 
corresponds to the K ~-th Fourier component of the 

- 1 
electron density p (r ) is determined by means of 

the formula: 

The first terms in Eqs. (5) and (6) which contain 
a-functions determine the intensities of the lines 
on the x-ray photograph while the second terms de­
termine the intensity of diffuse scattering, i.e., of 
the background. 

Thus the intensity of the background is de­
termined by the distribution throughout the crystal 
of the fluctuations ~ C A and ~ Tf. As is well known 

the probability of the occurrence of a certain distribution of 
fluctuations i~proportional tow "v e-R!kT, where R 
is the minimum work required for the production in 
a reversible manner of this distribution of fluctua­
tions, and T is the temperature of the external 
medium. In the case of a cubic crystal the expres­
sion for R can be written in the following form: 

R = 1/2 ~ [cp11~ (d'YJ)2 + 2cp11c d'YjdCA + Cflcc (dcA)2 (7) 

+ oc (V'YJ)2 + 2rv'YlvcA + ~ CvcA)2l d't. 

Here cp is the thermodynamic potential per unit 
volume of the crystal 

Cfl1111 = 02cp I O'Yj2; Cfl11c = 02cp I O'YjOCA; Cflcc == c'J2cp I ad; 
the terms which contain derivatives of C A and Tf 

take into account the inhomogeneity of the fluctua­
tions in space, and play a particularly important 
role in the neighborhood of critical points and of 
points of phase transition of the second kind, guar­
anteeing that the fluctuations at these points re­
main finite (see Refs. l-3 ). 

As may be seen from (5) and (6), in order to cal­
culate the diffuse scattering, it is sufficient to 
know the Fourier components of the fluctuations 
~ C A and ~7]. Therefore, in what follows we shall 
determine not the distribution of the fluctuations in 

composition and in the degree of long range order, 

hut directly the average values of the squares of 
the Fourier components of these fluctuations. In 
order to do this, we expand ~ C A and ~ Tf into 
Fourier series: 

de A= ~ (Ct eifr + c; e-ifr), 

f 

d'Yj = ] ('YJt eifr + 'YJ~ e-ifr)-, 

f 

(8) 

where fx > 0. Substituting Eqs. (8) into Eq. (7) for 
the minimum work and performing the integration 
we shall find that the distribution of the probabili­
ties of the Fourier components of the fluctuations 
~ C A and ~ Tf has the form 

w ~ exp {-:r] [ (cp1111 + ocf2) I 'Ylt J2 

+('fcc+ ~f2) I Ct 12 

(9) 

From formula (9) it may he seen that each term in 
the sum over f depends only on those Tf£ and C f 

which correspond to the given f. Consequently, the 
fluctuations of the Fourier components correspond­
ing to different f are statistically independent (hut 
the fluctuations of the quantities C f and 7] f with 

the same f are statistically dependent), and there­
fore it is not difficult to find the average squares 
of these fluctuations. For the calculation of the 
latter we shall assume that f is sufficiently small 
(this assumption also justifies the neglect made in 
(7) of the higher derivatives of C A and Tf ). We may 
then retain terms which contain the factor [ 2 only 
close to small terms which are independent of f 
(which vanish near the point under consideration 
in the phase diagram), and we may neglect terms 
proportional to { 4 . Substituting the expression ob­
tained in this way for I Tf f j 2 with f = q ~ into Eq. (6), 

and taking into account that 

we shall find the following expression for the in­
tensity of the background in the neighborhood of a 
superstructure line (for small q ~ ): 

1 
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2 

+ kT I 87t3 r'!''l'IJ- cp1]C 

'Pee 

(10) 

2 -1 

+ (a - 2 'P71c 1 + q>~c ~) q? J } . 
q>cc q>cc 

If we then determine I C [ 2 and take into account 
qi 

Eq. (5), we shall find an analogous expression 
for the intensity of the background near a princi­

pal line 
N2 - -

I = 87t3 v [I CA fA+ CB f B 12 0 ( Qi) 

I fA -· f B \2 kT 
+ 81t3 

or 

(12) 

kT If A- f B 12 1 J 
+ 81t3 (d2cp;dc~l + p'qr • 

In the above the derivative a;acA (or a; a.,.,) in 
(lO)and (ll) is evaluated forthe equilibrium values 
of the degree of long range order 77 = ry (or of com­
position). On the other hand, the derivative 
d/dcA in Eq. (12) is calculated fort.he values of ry, 
which correspond to the changed (due to fluctua­
tions) composition of the alloy ( and to the same 
temperature). The quantity f3' denotes the coeffi­
cient of ( \1 C ) 2 in the corresponding expansion of 

the thermodynamic potential. The equivalence of 
Eqs. (11) and (12) follows from the condition 
acp;a.,.,=o. 

The general formulas obtained above for the in­
tensity of scattered radiation may be applied to 
various special cases for which expressions for 
thermodynamic potential as a function of C A and 

77 are known. 

2. THE SCATTERING BY SOLID SOLUTIONS NEAR 
POINTS OF PHASE TRANSITION OFTHE SECOND 

KIND 

In this section we shall examine the distinctive 
features of diffuse scattering of x-rays by solid 
solutions in the order-disorder transition which takes 

place as a phase transition of the second kind. 
Phase transitions of this type occur in a number of 
alloys, for example, in CuZn, AgZn with an ad­
mixture of Au, Fe 3 Al, etc. The distinctive fea­
tures referred to above occur because at the point 
of a phase transition of the second kind, the de-
rivatives m and m C vanish. Because of this 

T~ T'f/ J 

anomalously large fluctuations in the degree of 
long range order should be observed, and also the 
very intense diffuse scattering in the neighborhood 
of the superstructure line which is connected with 
these fluctuations. 

According to the thermodynamic theory of phase 
transitions of the second kind 3 •4 the expression 
for cp in the neighborhood of the transition tempera­
ture T 0 may he represented in the form of an ex­
pansion in powers of ry: 

- + 1 I A 2 + lj B- 4 9 - 'Po /2 Y1 4 "'I ' (13) 

A=a(T-T0 ), a>O, B>O, 

where Cf'o• A and B are functions of c A' T and P. 
The coefficients a and B may he determined from 
the experimental data on the discontinuity in the 
specific heat during the phase transition and on the 
temperature dependence of Tf by means of the 
formulas 3 : 

Evaluating the second derivatives of cp with re­
spect to 77 and C A near the transition point and 
su~stituting then. into (10) we shall find that the 
intensity of scattered radiation near a superstruc­
ture line below the temperature of ordering ( T 
-:;_ T 0 ) in the special case of cubic crystals is 
equal to 

I 2 3 N 2 j f f J2 aT0 { T 0 - T , ( , ) = 7t -- A- B --- 0 q. 
V B ~ 1 

(14) 

For T?. T 0 only the diffuse part of the scattered 
radiation remains 

(15) 

a :•J-1 +-T q . . a 0 1 
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For crystals of different symmetry u. q '~ should, m 

E:qs. (14) and (15)>be replaced by 1 

3 

~ rxkz q;kq;z. 
k.l=l 

Expression (15) for the Jntensity of scattering 
from a solid solution in the disordered regiou agrees 
with the corresponding expression obtained by 
Landau 1 in the case when there are no fluctuations 
in composition. The presence of such fluctuations 
leads to a change in the expression for the intensity 
of scattering for T < T 0 : formula (14) has acquired 
a square bracket in place of unity which appeared 
in the corresponding formula of He£. l. In the 
scattering from an ordered crystal a sharp line is 
formed whose shape is described by a o-like func­
tion, and whose intensity is proportional to the 
temperature difference T 0 - T and which vanishes 
at the temperature of ordering. At the same time, 
near the temperature T 0 , both in the ordered and 
in the disordered region for small values of qi,one 
should observe a very intense background on an 
x-ray photograph because of a sharp increase in the 
magnitude of fluctuations of long range order. The 
maximum of this intensity lies at q ~ = 0 and is 

inversely proportional to the tempe~ature differ­
ence I T - T 0 I· For a given q.J , the intensity of 
the background is a maximum* at T = T 0 , and its 
decrease is proportional to I T - T 0 1. For alloys 
whose composition corresponds to a maximum 

temperature of ordering, the intensity of background 
decreases as we go away from T 0 twice as fast 
in the ordered region as in the disordered region**. 

* For T = T 0 , the intensity of the background becomes 
infinite at the point q ~ = 0 in accordance with Eqs. 04~ 

and (15). This circu~stance is related to the fact that 
for q ~ = 0 the magnitude of the fluctuations in the long 

J 
range order is not limited (as it is for q~ =f= 0) by the 

J 
necessity of performing work related to the formation of 
an inhomogeneous fluctuation. However, in this case 
the finite dimensions of the crystal lead to a finite value 
of the intensity of the background and at the same time to 
the breakdown of Eqs. (14) and (15). This breakdown 
occurs only in a range of angles A/ L (where L is the 
size of the region of coherent scatterin~) and within a 
very narrow range of temperatures"' (A/ L )2 T 0 • 

**The quoted value for the ratio of the rate!5 of change 
of the intensities of the background as we move away 
from T 0 in the ordered and in the disordered regions is 

only correct for sufficiently small values of q~. For 
J 

large values of q~ this ratio will become larger because 
J 

of the temperature dependence of ex. and of the factor 
kT in Eq. (10). 

In other cases the ratio of the rates of decrease in 
the intensity of the background is less than two. 

All the parameters which occur in Eqs. (14) and 
(15) (with the exception of the quantity 
u. /aT 0 ) may be determined if we know from other 
experiments the forn, of the functions T0 ( C A ), 

~ C , the dependence on the concentration of the p 

chemical potentials of the atoms of the crystal at 
T "' T 0 and the temperature dependence of Tf ( T) 
near the transition point. The only unknown para­
ineter is determined by comparing the calculated 
background intensity with the experimental one 
(it may also be calculated by means of the statis­
tical theory of solutions), and from this one may 
calculate the values of the intensity of scattered 
radiation for various angles of scattering (near 
superstructure lines) and for various temperatures 
( cluse to T · ) for all the superstructure lines. 

As is sho~n in He£. 4, at the point 0 where the 
curve of the points of phase transition of the second 
kind AO goes over into the curve of phase transi­
tions of the first ·kind---the dissociation curve 
OB (Fig. 1 ), the condition 

B = ~ ( a A I a c A ) 2 cf/c 

T 

L---------------------------.-~ 

FIG. l. 1- Disordered crystal; lJ- Ordered crystal; 
lll- Two phase region. 

is fulfilled. This means that the expression which 
appears in the square brackets of Eq. (14) reduces 
to zero at the point 0. Near such a point for 
T ~ T0 the expression for the intensity of the 
radiation scattered by the ordered crystal may be 
represented near a superstructure line in the fol­
lowing form: 

oc '2 J-1
} + aT0 qj ' 
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where T cr is the temperature which corresponds to 
the point 0, while r 1 and r 2 may be considered 
to be constant in the neighborhood of this point. 
Thus for T < T 0 the background intensity which 
corresponds to a given qj decreases extremely 
slowly as the temperature is decreased in the 
case under consideration.. If T > T 0 , then as T 0 

is approached, the background intensity increases 
in accordance with Eq. (15), i.e., in accordance 

with the same law which holds far from the criti­
cal point 0. 

In contrast to the neighborhood of the ordinary 
points of phase transition of the second kind the 

' magnitude of the fluctuations of the composition 
in an ordered crystal also increases very markedly 
in the neighborhood of the point 0, while the in­
tensity of scattering near a principal line in ac­
cordance with Eq. (ll) becomes equal to 

1=8r-3 N: {lcAfA+ C"stsl2 o(qj) (17) 

+ IIA-fsl2 kT X 
8rt3 'Pee 

the form: 

N2 
1=4T.2.n-y 1 fA 

- f 12 a To _1 {To-T tg .±J_ o (tli- tli·) 
B B K'3 T 2 ' II 

j 0 

kK' I 

(18) 

Here t/J is the angle of scattering, t/J. is the angle 
of scattering for the superstructure fine under 
consideration, n is the number of families of atomic 
planes taking part in the formation of this line, 
while P denotes the term next to (o:. /aT0)q'~ in the 
denominator of the corresponding Eq. (14) o~ (16) 
for an ordered crystal, and in the denominator of 
Eq. (15) for a disordered crystal. It is evident that 
in the last case the first term in (18) is absent. 

3. SCATTEIDNG NEAR A CIDTICAL POINT ON THE 
DISSOCIATION CURVE, AND ALSO BY WEAK, IDEAL 
AND ALMOST COMPLETELY ORDERED SOLUTIONS 

2(T0 -T)+(rxfa)q? } 
At critical points on dissociation curves (point 

2 (To-T) [r1 (T cr- T)JTo + r2 (To- T)/To] + (rx fa) qj2 . K in Fig. 2) the concentrations of both phases 

Thus in the neighborhood of the critical point 
mentioned above, one should observe very intense 
diffuse scattering in the neighborhood of both the 
superstructure and the principal lines. For a dis­
ordered crystal in the neighborhood of the point at 
which ordering takes place cp == 0 and since en 

TJe ' Tee 

does not vanish at the point 0 the diffuse scatter­
ing in the neighborhood of the principal lines is not 
large. 

We5 have also examined the special features of 
diffuse scattering by pure crystals near the point 
at which the curve of the points of phase transition 

of the second kind goes over into the curve of 
points of phase transitio_n of the first kind, and also 
in the neighborhood of an isolated point of phase 
transitions of the second kind. 

The formulas which have been obtained until now 
refer to the scattering of monochromatic x-rays by 
a single crystal. In order to be able to analyze a 
Debye photograph we must average the above ex­
pressions over all the orientations of the crystal. 
An averaging of this kind was carried out by 
Landau 1• In the cases under consideration the re­
sult of Landau's calculation 1 for an ordered crys­
tal in the neighborhood of superstructure lines has 

T H 

-1 I I 
I 

~·,----'----'----'-------

FIG. 2. 

become the same. At these points, as is well 
known, the derivatives d2 cp/dc~ and d3 cp/dc~ 
vanish, and therefore in the neighborhood of the 
critical point very large fluctuations in composition 
must take place, and very intense scattering of 
waves by such fluctuations should be observed. 

We expand the thermodynamic potential into a 

series in powers of CA - C Ak' where CAk is the 

composition which corresponds to the critical 
point* 

* For the sake of definiteness, we shall a~sume that 

the solution has an "upper" critical temperature, i.e., the 
state diagram has the form shown in Fig. 2. In the case 

of a "lower" critical temperature, the results will he 
altered in an obvious way. 
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Cf = Cfo+ f 1 (CA -CAk) + 1/2 f de A -CAk)2 (19) 
+ 1/afa (cA- cAk)3 +1/4f4 (cA-

-CAk)4 + · · · 
In the neighborhood of the critical point one may 
take 

f2=b(T-Tk); f3=j(T-Tk); f4>0, 

where T is the critical temperature. In order to 
k d . . . th find the equation of the issoctahon curve m e 

neighborhood of the critical point, one must sub­
stitute expression (19) into the conditions of 
equilibrium 

acp I - ~~ . 
acA cA~cAl- acA cA~cA2' 

cp (cAl)- cp (cA2) 

CA1-CA2 

W here C and c are the concentrations of atoms 
A 1 A 2 

A in the first and in the second phases which are 
in equilibrium at a given T and P. On solving the 
resulting system of equations, and on neglecting 

in the expression for C A - C A k terms proportional 

to I T - T k 13 /2, we shall find that the equation 
of the dissociation curve for small IT- Tk I has 
the form: 

(20) 

- (2jj3b) (cA- CAk) (T k- T p) 

~ Q (cA- CAk)2; Q = f4jb. 

Here T is the dissociation temperature for a solu­
P 

tion of given composition CA. 
Thus b and [4 may be determined from experi­

mental data if the curvature of the dissociation 

curve in the neigh~orhood of the critical point and 
the discontinuity in the specific heat at that point 
are both known. Using (19) and (20), and de­
termining the amounts of both phases by means of 
"the rule of the lever", we shall find that the 
thermodynamic potential of the solution of criti­
cal composition in a two-phase region is equal to 
cp= cp0 - ( b2 / 4{4 ) ( T- Tk )2 • Consequently, in 

going over into a two-phase region the specific 
heat at the critical point increases discontinu­
ously by an amount b..CP = Tkb 2/2{4 . The deriva-

tive d 2 cp/ de! in the neighborhood of the critical 

point may also be expressed in terms of!::.. cp and 
Q: 

d2'fJdc~ = 2b.CpQ (T + 2Tk- 3Tp)/Tk. 

Substituting this expression into (12) we shall 
obtain the following formula for the intensity of 
scattering from cubic crystals in the neighborhood 
of the critical point for small q.: 

' 

The formula obtained above contains only one un­
known parameter (3'bTk and allows one to de­

dermine the intensity of scattered radiation- near 
the principal lines and for small angles for solu­
tions of different compositions at various tempera­
ture& near the critical point. This formula shows 
that in the case indicated above, as in the case of 
a phase transition of the second kind, the back­
ground intensity is anomalously large when order­
ing ta~es place. It attains a maximum at the criti­
cal pomt forT= TP = Tk. 

The formula takes on a particularly simple form 
in the case of small angle scattering when 

In this case 

1 ]1'2 kTk [ T + 2Tk-3TP (22) 
I = 2 v I fA - f B 12 Q!lC p . T k 

~' 1f>7t2 • 2 <jJ J-1 
+brk-vsm 2 . 

The intensity of the scattered radiation near the 
principal lines on a Debye photograph ( calculated 
for a portion of the ring equal to its radius) for a 
solution which is near the critical state is de­
termined by a formula of type (18) 

N2 1 { - - I <Ji; ~ ) I= 47t2n y-3 r cAfA + cBfB 2 tg2 ° (t\J- •:\1; 
K; 
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where the angle ljii corresponds to a principal line. 
From (23) it follows that the background intensity 
falls off comparatively slowly as ll/J -ljii I in­
creases: the distance at which the intensity of the 
background is reduced by a factor 2 in the close 
neighborhood of the critical point is proportional 
to [( T + 2Tk - 3TP) I Tk ]lf4, with the coeffi-

cient of proportionalitybeing equal to unity in 
order of magnitude. The background intensity in 
the neighborhood of the Iloentgen lines also de­
pends weakly on the temperature--logarithmically. 
A more pronounced dependence on the temperature 
and on angles of the background on a Debye photo­
graph near a critical point should be observed at 
small angles. In this case t.he intensity of radia­
tion scattered by an individual crystal does not 
depend on its orientation, and therefore the averag­
ing over orientations wi 11 not change expression 
(22), and it will be applicable also for the calcula­
tion of the intensity of the background in a Debye 
photograph. From (22) it follows that at very small 
angles (or large A), when the second term in the 
•denominator of this formula is considerably less 
than the first term, I is inversely proportional to 
the difference T + 2 T k - 3 T p" The background 

intensity decreases with increasing ljJ faster than 
in the neighborhood of lines on a Roentgen photo­
graph, and the distance at which I attains half of 
its maximum value is proportional to 

[(T + 2Tk- 3T p) I Tk]'/ 2 • 

Equation (22) is evidently applicable not only 
to the scattering of x-rays but also to the scatter­
ing of light by transparent dielectric solutions 
near the critical point. Since the wavelength of a 
light wave is considerably larger than the lattice 
constant, Eq. (22) in this case is applicable not 
only for small, but for arbitrary scattering angles. 
The effective cross sections for scattering of visi­
ble light at frequencies considerably smaller than 
the frequency of self-absorption are in this case 
inversely proportional to A 4 and far from the criti­
cal point I rv A- 4 

o Near the critical point because 
of the last factor in (22) the intensity of the scat­
tered radiation depends more weakly on A (the de­
pendence is A- 2 right at the critical point). 

We note that the results for small angle scatter­
ing obtained above are applicable not only to 
solids, but also to liquids. It is true that in liquids 
density fluctuations play a significant role. How 00 

ever, in the neighborhood of the critical dissocia­
tion point the scattering by density fluctuations is 

considerably smaller than by composition fluctua­
tions (which we consider to be statistically in­
dependent). Therefore, Eq. (22) may also be ap­
plied for the determination of small angle scattering 
of x-rays by liquid solutions in the neighborhood of 
the critical point, and for the scattering of light by 
liquid solutions through arbitrary angles. 

As is well known, the general expression for the 
thermodynamic potential of a solution may be ob­
tained without utilizing a specific statistical 
model of the solution in the case of small concen-
tration of one of the components ( CA << 1 ). Ne­
glecting terms quadratic in C 1 we shall write the 
expression for cp in the form (see, for example, Ref. 
3 ): 

Here cp8 is the thermodynamic potential per unit 
volume of the pure crystal B, N 0 is the number of 
atoms per unit volume, and {( P, T) does not de­
pend on C A o The derivative of the thermodynamic 
potential (24) d 2 ql de~ = N 0kT I c A for sufficiently 

small C A is considerably larger than the second 
term in the denominator of Eq. (12), and therefore 
in this case the following formula is valid for the 
determination of the intensity of scattering at all 
angles 

As should be expected in the case of weak solutions 
the background intensity does not depend on the 
temperature at which the crystal becomes ordered, 
and is proportional to C A· 

The expression for cp has a simple form also in 
the case of ideal solutions 

where cp0 does not depend on the composition. 
Since the coefficient f3' in the expansion of cp in 
powers of L'l c A is equal to zero in the ideal solu­
tion approximation, it follows from (12) and (26) 
that the following formula holds for the intensity of 
scattering by ideal solutions at arbitrary angles of 
scattering 

I= 87:3 (N 2 jV) ~~ cAfA + CBfB 12 a (qi) (27) 

+N/fA-fB/2 cA(J -cA)· 
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In this case the background intensity also does not 
depend on the temperature and has a simple de­
pendence on the composition. We note that (27) 
agrees with the formula obtained by a different 
method by Laue6 on the assumption of a completely 

Tandom distribution of atoms of different kinds 
among the lattice points. This assumption is evi­
dently fulfilled in the case of an ideal solution. 

The thermodynamic expression for Cf! may also 
be obtained for ordered solid solutions whose com­
position is close to the stoichiometric, at low 
temperatures, when the numbers of atoms at 
"wrong" lattice points may be considered as small 
parameters. In this case for the solid solutions of 
the structure under examination in which the 
numbers of lattice points of the first and second 
kinds are the same, the thermodynamic potential is 
equal to (Ref. 7 ): 

Here Cf!'· x 1 , x2 , e 1 , e 2 , e 3 depend only on T 

and P and do not depend on CA and TJ· For suffi­
ciently low temperatures, and for compositions 
sufficiently close to the stoichiometric one,i.e., in 
the region of applicability of Eq. (28), X may be 
considered to be constant, while p ~) and p (!) 
decrease rapidly as the temperature is decreased-­
faster than·e 1 , e 2 and e 3 increase. The coeffi-

cients of ( ~ TJ) 2 , 'VTJ ~c A and ('V c A ) 2 in the ex­

pansion of Cf! also increase more slow 1 y as T -> 0 
than p(~) and p(!) decrease. Therefore, at suffi-

ciently low temperatures the background intensity 
for arbitrary scattering angles has the form: 

I= 87e3 (N2/V)f~/cAfA +csfsl2 o(q;) (29) 
l i 

+ 1/4''l2 ~lfA-fs/20 (Qj)j 

+ N I fA- {B/ 2 (cAcs - 1/4 ''l2)· 

The background intensity in a Debye photograph 
in the case of weak, ideal and almost completely 
ordered solutions is also determined by Eqs. (25), 
(27) and (29), respectively. Equation (29) agrees 
with the expression for the intensityof diffuse radia­
tion scattered by an ordered crystal which was ob­
tained by Lifshitz8 on the assumption of the ab­
sence of correlation in the alloy. Thus the correla­
tion in the alloy becomes of small importance not 
only at high but also at low temperatures in the 
neighborhood of the state of complete ordering. 

It should be emphasized that all the above re­
sults have been obtained for the scattering by a 
system which is in a condition of equilibrium (cor­
responding to a certain annealing temperature). 

I take this opportunity to express my gratitude to 
A. A. Smirnov for his interest in this work and for 
the discussion of the results. 
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