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calculation of nuclear deformations together with 
the decay scheme of Ref. 4 significantly 
improves the agreement with experiment, 10 which 
can be considered as an indirect confirmation of 
the collective (generalized ) model of the nucleus. 

1A. Bohr, Problems of contemporary physics 9, 9 
IlL (1955)(Russian translation). 

2F. Rasetti, Elements of nuclear physics (Russian 
translation), GITTL, 1940, pp. 84, 91. 

3 
H. A. Bethe, Nuclear physics, Chapt. 2, GITTL~1948, 

pp. 180, 357 (Russian translation). 
4 
S. G. Ryzhanov, J, Exptl. Theoret, Phys, (U.S.S.R.) 

29, 247 (1955); Soviet. Phys. JETP 2, 334 0956). 
5 
L.A. Sliv and L. K. Peker, Dokl, Akad. Nauk SSSR 

99, 727 (1954). 
6 
L.A. Sliv and L. K. Peker, lzv. Akad. Nauk SSSR, 

Fiz. Ser, 19, 355 (1955). 
7 
S. G. Ryzhanov, 1, Exptl, Theoret. Phys. (U.S.S.R.) 

17, 540 (1947). 
8 
J, Blatt and V. F. Weisskopf, Theoretical nuclear 

physics (Russian translation), IlL 1954, pp. 29,66. 
9 
K. Ford, Problems of contemporary physics 1, 116, 

IlL, 1956 (Russian translation). 
10 

E. Rutherford, Lewis and Bowden, Proc. Roy. Soc, 
(London) 142A, 347 (1933). 

Translated by G. E. Brown 
57 

On the Probabilities of I-Particle Decay 

L. B. OKUN' 

(Submitted to JETP editor March 31, 1956) 
J, Exptl. Theoret, Phys. (U .S.S.R .)31, 

333-335 (August, 1956)/ 

R ECENTL Y Gatto 1 indicated the interest 2 
in applying arguments developed first by Fermi 

for the photoproduction of 11-mesons to the prob­
lem of the decay of "strange" particles. As is 
well known, Fermi showed, on the basis of the 
requirements of unitarity and symmetry of the 
S-matrix, that the phases of strongly interacting 
particles which are produced in weak processes 
are defined by their mutual scattering. Gatto con­
sidered the decay of the A-particle from this point 
of view and came to the conclusion that the re­
strictions imposed by the unitarity and symmetry of 
the S-matrix on the ratio of probabilities of the two 

possible modes of decay of the A-hyperon (A -+p 

+ 11 - and A -+n + 11 ° ) are very weak. This con­
clusion, as will be evident from the following, de­
pends to a large extent on the fact that the scat­
tering of 11-mesons by nucleons at energies "-'40 mev 
is still small and the corresponding phases are 
small. 

We consider in analogous fashion the decay of 
the ~-hyperon. In this decay, ""' 115 mev is given 
off, corresponding to the scattering of 11-mesons of 
"-' 140 mev in the laboratory system by nucleons. 
It is well known that the scattering of 11-mesons 
by nucleons is already considerable (according to 

Orear3 the phases o. 33 ""'40° , o. 3 ""'-10°, 

o. 1 ""' 15 ° • 0.3 1 = 0.13 = c.x. 11 = 0; the d-phases do 

not exceed 5°). 
The 11-meson-nucleon system formed as a result 

of ~-particle decay, has the following values ] of 
total and L of orbital angular momentum, depending 
on the spinS and parity P of the hyperon: 

Spin and parity 
of the ~-hyperon 

s p 

1/2 + 1j2 -
3j2 + 
3/2 -

I State of the 1T + N system 

I 1 I L I Phases 

1j2 1 
1;2 0 01:31> au 

3;2 1 a 3 , a1 

3;2 2 ass, otra 

(P designates the _parity of the ~-hyperon relative 
to the nucleon). Thus, L and ] of the IT-meson­
nucleon system are determined unambiguously by 
the spin and parity of the ~-hyperon. 

We consider two possible decay modes for the 
~-hyperon: 

1;+--+ P + 'lt"0 and 1;+--+ n +'It"+. 
If weak interactions are excluded, then the S-matrix 
has only diagonal elements, transforming ~ + into 
~ + and the 11-meson-nucleon system with a given 
T into a state with the same T. These diagonal 
elements are equal to 1, ei 2o. 3 and ei 2 0. 1 (the 
second index of the phases o. 3 and o. 1 is omitted). 

If weak interactions are now included, nondia­
gonal elements arise which transform the ~-particle 
into states of the 11-meson-nucleon system with 
T = 3/2 and 1/2. It follows from the unitarity and 
symmetry of the S-matrix 2 that these diagonal 
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elements have the form ip e ia. 3 and i p e ia. 1 , 
3 l 

where p 3 and p 1 are real. The transition ampli-

tude for the ~ + -hyperon going into the states 
TT + n and rr 0 p can he expressed in the following 
way in terms of the isotopic amplitudes 

The ratio of corresponding decay probabilities is 

w0 2 + 2z 2 - 4z cos (cx1 - cxa) 
X=w+ = 1 + 4z2 + 4z cos (a1 -cxa)' 

where 

z = P1 I Pa ¥2. 

The phase differences for various spins and 
parities of the ~-hyperon are: (l/2 +) a. 11 - a.3 1 

"'0; (1/2-) ().1- ().3 "'25°; (3/2 +) (). 13 -cx.33 

"'- 40°. 

f 2 

Figure 1 

For all other values of the spins and parities 
the differences of the corresponding phases (and 
the phases themselves) are close to zero. The 
limits of X depend on the phase differences in 
the following way 

Difference in phase 

Upper limit of X 
Lower limit of X 

0 
co 
0 

"-'25° 

"-'20 
"-'l/20 

The restrictions obtained on the magnitude of X 
are very weak. None the less, if it turns out that 
X > 10 or X > 1/10, this will mean that the 
~-particle definitely does not belong to the class 
3/2 + , and if X > 20 or X < 1/20, then the possi­
bility 1/2- is unambiguously excluded. 

The ratio of probabilities of different ~ + -hy­
peron decays can be related to the decay proha- 1 
bilitY. of the ~--hyperon if it is assumed, as Gatto 
has uone, that the interaction leading to the decay 
is a tensor of rank 1/2 in isotopic space. It is 
easy to show that in this case the decay ampli­
tude for ~- _, n + rr- is equal to 

where p 3 is the same quantity as in the expressions 

for a + and a 0 • 

The ratio of the decay probabilities for the~-­
particle and~+ -particle is, in this case, equal to 

w_ 3 
Y--------

- w++wo- 1 + 2z 2 • 

We find in this way that for every possible value 
of the spin and parity of the ~-particle, the points 
(X, Y ) can lie only on a well-defined curve in 
the XY plane. Gatto, who did not use the unitarity 
and symmetry of the S-matrix in considering the 
~-decay, obtained in this case a considerably 
less restrictive result; he found that the points 
(X, Y) can cover a certain allowed region- which 
is one and the same for all values of the spin 
and parity of the ~-particle. If the phase difference 
is close to zero (that is, in all cases except those 
in which the spin and parity of the ~-particle are 
equal to 1/2- or 3/2 + ) the curve Y ( X ) will 
he close to the curve hounding the allowed region 
of Gatto's work 1 (see Fig. 1 ). The curves for 
the phase differences of 25 and 40 ° are shown 
also on this Figure (curves TI and Til, respectively). 

If the point (X ,Y) characterizing the valu~s 
of the decay probabilities as found by expenment 
lies on one of these two curves, this will signify 
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(if we neglect the improbable possibility of a 
chance coincidence) the correctness of Gatto's 
hypothesis and will make it possible to draw 
definite conclusions about the spin and parity of 
the ~-hyperon. 

I wish to express my sincere gratitude to I. lu. 
Kobzarev for interesting and useful discussions 
and to Prof. I. Ia. Pomeranchuk for the interest 
shown by him in this work. 

Note added in proof. After this article was submitted, 
the author learned of the work in Refs. 4-6 in which the 
essentials of the above results are contained. In addi­
tion to this, preliminary experimental results were 
announced at the Sixth Rochester Conference which 
indicated that the magnitude of X was near to 1, and 
that of Y near to 0.1 -0.2. As is evident from the 
Figure, these data agree with the assumption that 
~ T = l/2. 
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and longitudinal vibrations. We so normalize the 
normal coordinates that, for any transverse or longi­
tudinal vibration, the Hamiltonian has the form 
~ (q 2 + n 2 q 2 ), where n . is the eigenfrequency 

I I 
of the corresponding transverse vibration (D ..L j ) 

or longitudinal vibration (Q 11 j ); j is the branch 

number of the dispersion. Each normal vibration 
gives rise, in the crystal, to an inertial polariza­
tion, i.e., to a polarization due to the displace­
ment of the ions and to the electron polarization 
produced by the displacement of the ions in the 
absence of an external field. The inertial polari­
zation dipole moment density p (r, t) varies sinu­
soidally in space, and its amplitude p 0 (t) is 

proportional to q. Let p 0 = u.J... j q for the trans­

verse vibration and p 0 = u.l{ j q for the longitudinal 

vibration. The relation between the parameters 
n . u. . for transverse and longitudinal vibrations 

I ' I 
is derived below. 

Let us consider the forced vibrations of ions 
produced by an external electric field ~ (r, t ). This 
field is chosen as a plane sinusoidal standing 
wave, vibrating harmonically in time with a fre­
quency w . Assuming that the interaction energy 
per unit volume of the crystal is equal to -~, 
we get for the dipole moment de::;nity due to forced 
vibrations: 

s 

p = ~ C$C~.J I (D.j- w2), 
i=l 

(l) 

'where s is the number of ions in the elementary cell 
of the crystal, minus one. The total polarization 
dipole moment due to the external field is P=p+p 

e 
where p e is the additional non-inertial polarization 

dipole moment due to the direct effect of the ex­
ternal field on the electron shells, the positions 
of the ions being held fixed. Let us consider two 
cases: 

L ET us consider vibrations with wavelengths l) The external field is transverse and div P=-0, 
much larger than the lattice constant, hut i.e., the fictitious charges of dielectric polariza-

smaller than c/ J/"" I0- 3 em. ( J/ is the characteris- tion and their corresponding fields do not arise. 
tic frequency for infrared dispersion in the crystal). In this case the external field ~ coincides with 
The latter assumption enables us to treat the the field E of macroscopical electrodynamics, and 
electromagnetic field created by the vibrating ions p e = E (n 2 -1) / 4rr , where n is the index of refrac-

as electrostatic, i.e., to neglect the retard~tio.n tion for light in the crystal, in the plateau region 
effects as well as the effect of the magnetic held. 1 ' 2 of the dispersion curve- between the region of 
For this range of wavelengths one can also neg- electronic absorption and the region where the 
lect the dispersion of the vibration eigenfrequen- absorption of infrared light by the vibration of the 
cies. ions takes place. We.get 

In isotropically polarizable ionic ~cubic) crystals, 
the polarization vibrations separate mto transverse 


