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it is not hard to show thatthis equality is satisfied 
identically, and that, therefore, it does not amount 
to some supplementary condition imposed on the 
function Y ( r ). 

An analogous simplification may be obtained by 
setting u. 2 = 0. But one must keep in mind that the 
iteration process may not converge equally rapidly 
in the two cases. 

The functions f+ ( r) and f- ( r) were calculated 
in the first approximation from the formulas (5)-(7), 
(9) and (10) and the scattering phases were found 
from them. The results are given in Figs. 1 and 2. 
For comp~rison, the results of a numerical integra­
tion 1 of Eq. (2) and the results a variational cal-
culation 2 are also given there. In the antisym­
metric case all three curves coincide within the 
scale of the drawing. In the symmetric case one 
obtains a somewhat higher value of the phase for 
k > 0 .5; at lower energies in this case also a 
complete agreement is obtained in the first approxi­
mation with the result of the numerical integration. 

In conclusion, we expressour gratitude to G. F. 
Drukarev for his interest in this work and for a 
number of valuable suggestions. 
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N OT long ago 3lanc-Lapierre and others 1 

showed that if the probability density w A (A ) 

of the envelope of a quasi-monochromatic station· 

any stochastic process ~is known, the character­
istic function f f ( u ) of the process is 

00 

f~ (u) = ~ w A (A) 10 (Au) dA. 

0 

(l) 

Rytov 2 continued the calculation and obtained the 
following formula: 

00 

1 ~ W A (A) w~ (~) = - dA, 
1t • J1 A2-~2 

1;1 

(2) 

connecting the probability density w f ( ~) of a 
stationary stochastic process with w A (A). In 
the present note I wish to show another way of 
deriving Eqs. (l) and (2), whereby they a'e obtained 
as the zero-order approximation in neglecting the 
·narrow passband width of an amplifier. The use 
in this derivation of the time average, correct in 
the case of a stationary stochastic process, gives 
the possibility of obtaining in a natural manner 
the correction terms accounting for the finite 
width of the passband. 

A quasi-monochromatic stationary process can 
be written in the form ~ ( t) =A ( t) cos [w0 t 
+ cp ( t) ] , ~ere A ( t) and cp( t ) are functions 
of time va"ying slowly in comparison with 
cos w 0 t . Then the characteristic function 
f f ( u ) is 

1 
!~ (u) = lim -

r~oo T 

T 

(3) 

X~ exp {iuA (t) cos [w0t + cp (t)]} dt. 

0 

Let us break up the interval 0 , T into N small 
intervals, each of length 'T= 2 rr / w 0 • Then 

N 
1 ~1 1 

fr, (u) = lim - L..J -
N-oo N 1:' 

m=l 

m-r 

(4) 

X ~ exp {iuA (t) cos [w0t + cp (t)]} dt. 

(m-l)T 

Taking into account the smallness of the change 
of A ( t ) and cp ( t ) in the time T, we expand the 
expression under the integral sign in a series in 
A and cp and limit ourselves to terms of the first 
order of smallness. 

Then after simple transformations we obtain 
in place of Eq. (4), 
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fr. (u) =lim 
N~oo 

N 

~~ 
m=l 

1 (5) 

m"' 

X ~ exp {iuAm cos (cu 0t + 'Pm)} dt 
(m-1)1: 

N 

+lim.!.~ 
N~oo N 

m=l 

Here A rn A and r~ are the values of m ' Tm ' m ' Tm 

A ( t), cp( t ) , and their derivatives at the 
beginning of the m th interval. It is ea;;y to see 
that the first of the sums in Eq. (5) gives Eq. (I); 
the other tvo sums give the correction depending 
on the finiteness of the rate of change of A and 

cp. . . 
If we use the well-known expression deta-m1mng 

the probroility density of a stochastic va-iable . 
in terms of its characteristic function, we obtam 
from Eq. (5), 

+co 
W~;; (~) = 2~ ~ f E, (u) e-iu~ du (6) 

-00 

On this transformation the second sum in Eq. (5) 
gives :zero. ) 

In this way Eq. (6) agrees with E:t. (2) to the 
accuracy of the correction term 

(7) 

We note that although for a stationary process 
~ must be equal to zero, the average value, Eq. 
(7), may differ from zero, since in increasing the 
passband, Aand ~ in the general case are no 
longer independent random variables. It is inter-

esting that the rate of change of the amplitude does 
not influence the probability density w g ( ~) 
in the first approximation. 

We note in closing that in the case in which 
~ is obtained by use of a narrow-band filter from 
a quasi-monochromatic stationary stocha;;tic 

process, obeying the normal probability distribu­
tion law, the correction term in Eq. (6) disappears, 
and we are left with the correct formula, Eq. (2). 
This agrees with a well-known property of the 
normal distribution relating to the linear transfor­
mation of the spectral components. 

1Blanc-Lapierre, Savelli and Tortrat, Ann. Telecomm. 
9, 237 (1954). 

2 
S.M. Rytov, J. Exptl. Theoret. Phys. (U.S.S.R.) 29, 

702 (1955); Soviet Phys. JETP 

Translated by C. W. Helstrom 
24 

Atomic Magnetic Moments of Ferromagnetic 
Metals and Alloys 

F. M. GAL'PERIN 

(Submitted to JETP editor March 29, 1956) 
J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 150-152 

(July, 1956) 

I N contemporary physic~ it is well known that on 
account of the difficulties associated with the 

many-electron problem, the relation for the quanti­
tative calculation of the atomic n1agnetic moments 
m and m for the ferromagnetic and paramagnetic cp rr' 
states of ferromagnetics, respectively, has not t 11Us 
far been found. The relation proposed by us was ob­
tained empirically. 

l. Pure metals. It is well known that m is ex­
pressed as a fractional number of Bohr magnetons 
MB (see Table I), and that this fraction is due to 

the exchange interaction between the s-electrons of 
the metal and the d- (or {-) electrons of the atoms, 
as a consequence of which m must somehow depend 
on the lattice parameter. On this basis we propose 
that in the equation for m, as well as in Eqs. (3)-(6), 
there enters the term 

E = 0.641 [n1 (r1 - R) + n" (rz- R)] =Eo+ !.iE, (l) 

where n is the number of nearest neighbors of an 
1 

atom in the lattice, n the number of next-nearest 
neighbors, r and r t1e corresponding interatomic 

1 2 h .. 
distances, R an empirical constant c aractenzmg 
the given transition element, E 0 theintegral part of 
E and M the fractional remainder, I /'),_£ I < l. 

'Let us first examine the first transition series of 
the periodic table of elements. For it*, 

30.6182-1.9175Z for Z~26 
R = 0.0325 Z 2 + _ _ (2) 

27.2382-1. 187o Z for Z ~ 26, 


