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this sense A .... 0 means neglecting values of the 
order of magnitude of a/R. 

For R << /... 0 ( /... 0 is the order of magnitude of the 

wavelengths in the spectrum of the atom) U is the 
form of London's formula. In the other limiting 
case for R >> /... 0 in the integrals with respect to 

p and w, the regions p "- w "- \/R are important, 
and the main member in U will be 

i 
U = 16TC5 0(1 (0) ()(~ (0) 

X lim\\ d p' d p"8-i(p'+p"JR-J.R(P'+P") 
1.-0 J ,) 

+ (p'p")2] = 23txl (0) 0(2 (0) 
4TCR7 

which exactly coincides with the results obtained 

by Casimir and Polder. 
I express my gratitude to L. P. Gorkov for 

taking part in the discussion of the above problem. 
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THE relationship which determines the energy 
spectrum of the y-radiation W ( t: y, eN) observed 

in any coordinate system at some angle eN , as a 

function of the energy and angular distributions of 
neutral mesons F ( ~: , e) in the same coordinate 

IT 
system is 

27t 

· 2~ ~ F (e:1t, 6) drp'. 

(1) 

0 

R ere t: 1T and t: y are the total energy of the ITo- me son 

and the energy of the y- quantum in units of the ITO -

meson rest entrgy: t: . = t: + 1/(4t: ) 
mm y y 

6 = ilfCCOS (sin-& COS rp' Sin()· + COS,'} COS() )• 
N N' 

e;7t -1j2e:y 
-& = arccos V . 

e:;-1 

For ITO -mesons whose angular distribution is pro
portional to cos 2e we obtain 

1 oo~ccs2 -& F (e:7t) de: 
W(e: 6 ) = - (3 cos 2 e --1) 7t 

Y' N 2 N 1 /' 2 1 y e:-
Emln rt 

(2) 

From this it follows that the y-spectrum recorded 
at angle e* = arccos ( l/yl3) is logarithmically 
symmetric.ii with respect to the energy t: = 1/2 
. . h f . . d' 'b y f 0 JUSt as m t e case o 1sotrop1c 1stn uhon o rr -
mesons. This means that from they- spectrum at 
a given angle and for an angular distribution of 
mesons of the form a+ b cos 2e, it is possible to 
obtain directly the energy distribution of the 
mesons and their mass by the method described in 
Ref. 1. Angles which are characterized as noted 
above will hereinafter be called "isotropic". 

Another characteristic of an "isotropic" angle 
is the dependence of the total gamma flux at a given 
angle on the ratio of the constants a arrl b in the 
angular distribution of the rrO-mesons. 

:Jy integrating (2) with respect to the energy we 
obtain the angular distribution of the y-rays pro
duced through the decay of ITO-mesons whose angu
lar distribution is proportional to cos 2 e, in the 

form 

oo~ 00~cos 2 -& F ( e: ) de: X ~ 1t n 

y v e:2 -1 
0 "min TC 

1 . 2 +;rsm 6N. 

It follows that_!!w gamma flux at angle e~ 

(3) 

= arccos ( l/ y' 3) remains unchanged in the transi

tion from the cos 2e law of meson angular distribu
tion to an isotropic distribution if only there is 
no change in the total number of mesons produced 
per unit time., 

It also follows from (3) that when the angular dis
tribution of rr0 -n,esons is a+ b cos 2e the angular 
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distribution of y-rays must have the form A + B 
cos 2e, where 

b [. f fcos 2 .&F(c:'"')dc:'"' J· 
A = a + 2 1 - J dc:Y J V 2 , 

0 a: c:, -1 

The same conclusion was reached earlier in He f. 2. 
Using this result and Hosenfeld's 3 suggestion re
garding the existence of an "isotropic" angle e ~ 
for charged mesons we can also conclude that the 
gamma flux at angle e*N is independent of the ratio 
of a and b in the angular distribution of rr 0 -mesons. 

The above-mentioned properties of the gamma 
spectrum and flux for the "isotropic" angle are 
retained in the more general case when the angular 
and energy distributions of the rrO-mesons are of 

the form a ( E 77 ) + b ( E 77 ) cos 2e. It should be noted 
that in this instance when the derivative of the 
measured gamma spectrum is multiplied by the 
gan1ma-ray energy we obtain the function a ( E77 ) 

+ l/3 b"k). 
I take this opportunity to acknowledge n;y in

debtedness to B. M. Pontecorvo for a discussion 
of the above results. 
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N aflongago, Beck's paper 1 appeared, in which 
the author, using London's equations for the mag

netic field in a superconductor, found an instability 
in the boundary between the n- and s- phases as re
gards a periodic (along the surface) perturbation of 

the shape of the boundary. It is immediately clear 
from Eqs. (25) and (34) of Hef. 1 that the instability 
found by the author, at least as regards a perturba
tion with a period much greater than the penetration 
depth of the magnetic field in the superconductor, is 
explained by the well-known fact that London's 
equations lead to a negative surface energy on the 
boundary 2 • Since a negative surface tension contra
dicts experimental results for thin films, the analy
sis of the problem of stability should be based, not 
on London's equations, but on the theoretical cal
culations of Landau and Ginzburg3 , which give a 
positive value to the surface energy. In Landau 
and Ginzburg's theory, the problem of stability be
comes the problem of a unique solution at infinity 
under corresponding boundary conditions. A strict 
analysis such as this can scarcely be performed by 
means of the non-linear equations of the theory. The 
only complete solution is for a perturbation with a 
period much greater than the penetration depth. In 
this case it can be made equal to zero, so that B = 0 
in the superconducting phase. Also, in agreement 
with the theory of Landau and Ginzburg, we attri
bute a positive energy to the boundary between the 
n- and s-phases, which we write in the usual form, 
( ll z /8 rr) ~. where H k is the critical field and ~ 
is a constant with the dimensions of length. The 
free energy change taking place with a variation in 
the shape of the boundary is written (for this case) 

H~ Hr, 1 \ 2 \1 ( 1) 
aF = -· w + tl-8 · as- if" a .\ H d . 

87:' n 7: r: V 
n 

The equilibrium of a plane boundary is studied in 
relation to an arbitrary (but not specifically ori
ented, as in Ref. 1) periodic perturbation. The 
stability of the boundary of arbitrary form is ana
lyzed in the same way because any small part of the 
boundary can be thought of as a plane. The in
tegral on the right side of Eq. (1) is easily trans
posed so that to calculate oF, correct to a second 
degree term over a small variation in the boundary 
oz, it is sufficient to know the magnetic field 
variation o H with an accuracy to a term of the first 
order of oz. By means of a simple transformation 
we can show that 

(2) 

where A0 is the vector potential of the unperturbed 
constant field H0 ; the integral on the right-hand 
side of Eq. (2) is taken over the surface of the per
turbed boundary. In the derivation of Eq. (2) the 
vector potentials A and A 0 are so normalized that 


