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Equations for the equilibrium distribution functions are obtained from the general dynamic
equations, without making the assumption of the canonical character of the initial equilibrium
distribution. In place of this a series of physical conditions are imposed of the type of the
condition of diminishing correlations with increase of the distances between the particles.

IF, for systems consisting of N similar interacting
particles occupying a volume V, we postulate the

existence of a class of distribution functions®*2
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(x* is a vector determining the position of the
particles, yi a velocity vector of the particles, z
an acceleration vector, etc.), and if we subject
these-distribution functions to the conditims
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and of anologous equations for the other distribu-
tion functions*, then it is possible to obtain a

* In the work of Born and Green! and in our previous

article” this condition is inaccurately written. The
correct expression is the one presented above.

system of basic equations of the kinetic theory
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in the absence of external forces, for an interaction
law given by a mutual potential ®.

As we demonstrated 2, N, N, Bogollubov s equa-
tions for the system under consideration, the Max-
well distribution, and (fors=/) the Gibbs distri-
bution all follow from Eq. (5), in the determination
of the eqilibrium state as well as of the stationary
state of a system in which the distribution func-
tion fs factors into the product of two independent
functions giving, respectively, the distributions
of the velocities and of the coordmates[f
=y, (x) ?, (y) 1. A generalization of the results
in the case of complex systems, consisting of
particles of different kinds, has also been de-
rived 8,

In constructing a kinetic theory independent, in
a certain sense, of the results of statistical mech-
anics, the theorem proved in Refs. 2 and 3 should
be considered as a sufficient condition for obtaining
an equilibrium solution. It is necessary to prove
the necessity of the above-indicated properties of
the equilibrium distribution functions for the
dynamic states of complex particles. It is desir-
able to derive this proof with the least possible use
of special assumptions about the character of the
law of interaction be tween the particles.

Let us write Eq. (5) in the form3'*
s 6
= [Hys; Fs] (©)
Lirhe
+ T S [4‘. (I)i. s41s Fs+1]dQS+1 dps-|-1,

i=1
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where F , represents the function f, normalized in
the manner of Bogoliubov, and where the momenta

appear in place of the velocities.
Let us assume that the density of our system is
small enough that the expansion
Fo=F{+v ' Fl 40 F2 . @)
is meaningful. Considering henceforth a system in
the absence of external forces, for the sake of
simplicity, we shall look for solutions of the equa-
tions
[Hs; Fs] (8)
t¢rs
+ 'v—g lE D, 544, Fst:] dqsy, dps+q = 0,
i=1
for the stationary state, subject to the conditions
(7), assuming central forces of interaction. Be-
sides the conditions enumerated in Eqs. (2)-(4), the
equilibrium distribution functions must satisfy
boundryconditions for relaxation of the correlations,
having the form

Fo(@u ..., p)— 11 Fi(qi p3)

1<<is

(9)

for all | q; -q; | > o

Let us substitute the expansion (7) into Eq. (8)
and consider the corresponding systems of equa-
tions. For the zero-order approximation of the
unary function ( single-particle distribution) we
obtain

m~ " (p,grad F}) =0, (10)

from which it follows that F(l) can depend only on
L
For the zero-order approximation to the s-dimen-

sional distribution function, we have the following
equation

3 0 -0
3 {aus JF? U, oF° (11)
= Lagf op? g3 9pyg
1 ( _OF OF? 0.
S

and conditions on the relaxation of the correlations
of the form

FF— 1] P~
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The equations of the char-

foralllqi—qjlaoo.

acteristics
dgi dp}
0H, [ dp* —0H_ [ oq¥ "’
«e=1,2,3;i=1,...,s

possess 6s - 1 integrals of the motion: J (q1 , e
P;)=¢,

"Let us assume that the transitionto the limit
lq, - q].| - oo is ‘‘ adiabatic’
that in the passage to the limit to be considered
the limiting functions Fg depends on the same in-
tegrals of the motion as the initial function F(s).
Since F(S) is an implicit function of q and p,

) JGS—I)
= F{(limJy, ...

.

’; i.e., let us assume

lim F§(Jq, ...
, lim Jgs—p).

If we set lim ]k = ]*k then, from the condition on

the relaxation of the correlations, we obtain

Fy(Ji,...)=FY(py) ... F3(ps) (12)
or
InF¢(Jr, ...) = Sin F{ (py). 13)
i=1

Because of the fact that the Fg are functions of the

3

s-body”’ problem, while the Fg are functims of
the “‘single-body’’ problem, it follows from (13) that
in the limit ln Fg depends only on additive in-
tegrals of the motion and is made up of a linear
combination of them. Not considering the uniform
translational and rotational motion of the system as
a whole, we obtain

InFQ, «..) = o — BWs,

where W"; = lim Hs.

(14)

In this way the solution sought

for will have the form

F§ = coexp (— BH,) (15)

in connection with the ‘‘ adiabatic’’ character of
the limiting transition being considered; in par-
ticular

FY=c,exp (— 8p}/2m).

In agreement with the conditions on the relaxation
of the carelations, c = ( c, )*, and from the normal-

ization conditions it follows that
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-1

e = ({exp (— gp*/ 2m) dp)

For the first approximation to the single-vari-
able function

= m™" (prgrad F}) + { [@,,; Fildg,dp, =0 (16)
and since

S[(I)m; Fg]d%dpz

= S l{o(- Z)an oo~ 2

-+ exp (— %—fé) S -—2—2‘ exp (—B®y,) dq,

ps Bp;
X 87 exp (— W) dpz] =0,
we deduce that Fi can depend only on pl . From

the nornalization condition it further follows that
Fi = 0. Analogously, we find that all the higher
approximations for the single-variable functions
vanish.

Passing to the binary functions (joint distribu-
tions ), let us examine the equation

2
e Fil+ [ @is; FS]dasdps =05 (17)
i=1
Using (15) we can write

8[22(1)1.3; Fg] dqs dps (18)
i=1
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<Joso( 25 [
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Ly (-2
m ) ogy

On the other hand, setting
Fy= Flo;, (19)

for the particular solution of the inhomogeneous

Eq. (17), we get

exp [— B (D5 + Dy3)] d%]'

. 1 A *
[H; Fil = [H; Fg?’z]:[Hz; Fg] P2 (20)
+[Hy; 9a] FS = [H,y; on] FS;
. 9D, 99,
s o) + D {70 22
@ aql apl
L L N >
g5 dp;  m agr M og:f

Noting that

csgexp (—Bp*/2m)dp = ¢y,
we find a particular solution in the form
Foa=F3\exp [— £ (Oy + Dol das. (21)

The general solution of Eq. (17) is represented by
the expression

F} = Fio, + byF3, (22)
where the constant b; must be chosen so that F;

satisfies the condition on the relaxation of the

R |
correlations: F, » 0 for | q, —qil - oo, Corre-

spondingly b; is given by

1
b: = — (1 + s + ) g,
where fl.j =exp (-8 (I)i]_) -1, and F; can be repre-

sented in the form
Fé = Fg g f13f23dQ3- (23)

1 ..
For F3 we obtain in an analogous manner

Fiy= F3 SeXP [— B (Dyy + Dy + ®y)] dq, (24)
+ b Fs,
where
bé = — S (I 4+ fia + foa + fs4) dq,.

Let us further consider the equations

(Ha Fi1 4+ 3} (@ Fildaydp, =0 (25)

1<Ii2

Substituting F; from (24) we obtain
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[Hz’F +2‘ g[nzgajf

X exp [— B (D5 + Dyy)] 9340,

J 29 0 .
+ ’_;S 90 exp [— 8 (D3 + Dys)] ’?sd%]
1 29
+o D Fy[AL B (@, + By)) g
Py 0
+ ﬂ;q—g— XD [— B (D1 + Dyy)] dgy ] = 0.

Seeking a particular solutxon of the mhomogeneous
equation in the form F =F%¢" cp2 , where cp2 does

not depend on the momenta, we obtain

0 L
% exp [ — B (045 + Dy
aq; 9q;

x {{exp [— 8 (@14 + au + Du)) dgafdgy

+ b;, EQ; geXP [— B (D5 + Do3)] dgs,

q,
from whichwe find for the desired solution

L (26)
F39, :‘Z_FSEXP[—P( 13+ D3

D, + Dy + D34)] dqsdq,
+OiF Sexp [— 8 (Dyy + Dys)] dgs.
We can then write the general solution in the form
F} = Fio, + biF} (27)

and from our boundary conditions we obtain for the
constant bg the expression

6= 5\ (1 Fuu b a4 o+ g (28)
+ Faa 4 Fisfra =+ Fisfaa =+ T1af2s
+ T2s Foa — Fisfsaf1a — Fasfaafea) d9sdqs.
Finally, F? is represented by the product

Fi = F)L% (29)
where the symbol Lf; designates a collection of

integral terms determining all possible correla-
tionalrelations between a fixed group of particles

(1, 2) and the “running’ group of particles (3, 4).
In this fashion we have for the binary functions
Fy, F3 =

FgL?Z’ F2_'FL12:-..

and for the ternary functions

g, Fé:FgL‘iza, Zt—f'olqzs,---

In connection with the fact that we are at the
moment interested only in the question of the
general structure of the solution (in the sense of
its multiplicity with respect to the dependence on
coordinates and momenta ) and not in the problem
of the exact construction of all the higher approxi-
mations, we shall examine only the “ principal’’
parts of the particular solutions of the correspond-
ing inhomogeneous equations, i.e,, expressions of
the form

i F
Fs = T S Pofbsts - -« Pspim1dQsyy - - - Aqsti, (30)

S
e = €Xp (—— ). s+1>;
j=1
where the superscript i indicates the order of the

- -1
Postulating for F s+1 the form
(30), let us consider the equation

w? Dj, 541 Fili] dqsi1dpsii (31)

j=1

approximation.

[Hg; Fil

i o ‘
Substituting F s =(F /L ')}/ , we obtain
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Comparing corresponding terms, we can write:

Sa P (p‘ ) S Protr oo v by bi—y dqu dqs+2 Ce qu'H
1o
and since -
o
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we arrive at the result

Té = S}"s}"‘s—}—l oo srim1dQsyr . dqsyi- (32)
The above reasoning serves as a proof By induc-

tion of the correctness of the expression (30) for

the “‘principal’’ parts of the particular solutions

F s‘ F s‘ differs from the exact solution F* only
S
that in the latter additional terms are contained,

while the structure of the solution F ¢ coincides
with the structure of F¥ in the sensesin which we
are interested. To determine the exact solution

Fsi it is always necessary to operate not with the

*“ principal”’ parts of the particular solutions, but
with the complete solutions, i.e., with expressions
of the type of Eq. (27), in which the constants b*
are chosen with reference to the boundary condi-
tions on the relaxation of the correlations, as was
done in obtaining Eq. (28). Use of the general solu-
tions does not essentially complicate the proof of

the stated theorem and leads only to more cumber-
some expressions. We note, by the way, that the

procedure considered by us also gives another
method for the construction of the results of the
theory of Ursell and Maier for the coordinate part
of the distribution function. All the reasoning pre-
sented above holds also in the presence of ex-
ternal canservative forces; in this case one must
understand # the energy of the corresponding
group of partii:les including these external forces.

We shall make a few remarks regarding the de-
pendenceof theapplicability of the above considera-
tions on the character of the interaction law ®( r)
between the particles and on the density of the
system. If the interaction potential falls off with
increasing r faster than r-3 and if the density of
the system is sufficiently small, the multiplicative
structure of the equilibrium solution is that de-
rived above, where in the second part of the
theorem an essential role is played by the assump-
tion of the adiabatic character of the transition to
the limit in the condition of the relaxation of the
correlations, in the sense indicated earlier.

But if the potential ® falls off with increasing r
as r"3 or more slowly, then the series representing
the part of the solution depending on the coordin-
ates diverges, and an additional investigation is
necessary. For a potential of the form

d(r)=—ar "+ br—m,
(m>n) or q)(f) = —qr—" + Ae—r
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the reasoning presented is correct for n > 3, i.e.,
for a “‘sphere of influence’ of the intermolecular
forces which is finite, but not necessarily infin-
itely small ( small on the microscopic scale).

Consequently, while in the considerations of
Green! the smallness of the density of the system
is not used, but rather the microscopic smallness
of the ‘“ sphere of influence’ is used (in essence
a mechanism of instantaneous collisions is as-
sumed ), in the theorem presented above the oppo-
site situation obtains: the smallness of the density
of the system is explicitly used, while the micro-
scopic smallness of the sphere of influence of
intermolecular forces is not required; the size of
the sphere of influence is limited simply by the
formal requirement of convergence of the integrals
appearing as coefficients of a series in powers of
the density. In order to relax the requirements re-
ferring to the density of the system and to the
character of the interaction, as mentioned above,
an additional investigation is necessary.

Incanclusion, let us consider the example of a
system on which, besides the conservative internal
forces, external forces depending only on the
velocities of the particles are also acting.

The basic equation for the distribution function
f, in the most general case of arbitrary forces has

the form:

of s of, .
EP T (33)
i=1
S a 1 a
x % 5y, (F:F) + 55 250 (F:F)
o 0
-+ —}rz—gg Z 3')',7 (Fl s+1fs+1) dxs+1dys+1 =0,
i=1

where we have used the same notation as in Ref.
3 and in Egs. (1)-(5) of this article. Setting

Ofs /0t =0, [s=9s(X)s (),
for the equilibrium solution, we obtain
o [ 9%s 1 09
S{a eyt oy (34)
i=1

S
(2 s Fip 4+ S b5 Fi, s+1dxs+1)
=
by Op dF,
m (ayl L + ayl CPS/\, 0.

A necessary condition for the realization of an

+
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equilibrium solution, existing in the absence of
external forces of the type considered above, is
the simultaneous fulfillment of the following equa-
tions

09, ¢ Jq, oF

. s OF
oy, m eV gy Fid ge=0 (5

and, consequently, the forces F'. must satisfy the
o . t
condition

(m/a) (y:iFi) + OF:/dy: = 0. (36)

In particular it follows from (36) that gyroscopic
forces will not disturb the equilibrium condition
of the system. In an analogous way one can treat
the more general conditions mentionedin Ref. 2.

I take this occasion to express my gratitude to
N. N. Bogoliubov for proposing the problem, and
also to M. A. Leontovich and Ia. B. Lopatinskii
for discussion of questions connected with the work.
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It is shown that the discrete energy levels of an electron in a crystal are widened into
narrow bands in strong magnetic fields. The structure of the energy zone in a crystal lo-
cated in a magnetic field is studied. The possible influence of the broadening on the

de Haas-van Alphen effect is discussed.

FREE electron in a uniform magnetic field

performs a finite motionl which corresponds
to a classical revolution (at least in the direction
perpendicular to the magnetic field H). The mini-
mum quantum-mechanical ‘“radius’’ of this revolu-
tion is

o = V'hc/eH. (1)

In addition to the magnetic field the electron is
acted upon in the crystal by a periodic electric

field (the lattice constant will be designated by
a), and for all real fields H.

ce=a/uy &1 (2)

(thus, for example, with H ~ 10* cersteds and a
=25 x 1078 cm we have € = 1072).

In the theory of electron motion in a crystal
placed in a magnetic field the only terms that are
retained (except in Ref. 2) are those which remain
finite when € » 0. As aresult, the energy levels

of the electron in a magnetic field are degenerate
and depend, just as in the case of free electrons,
on only two quantum numbers ( see; for example,

Refs. 3 and 4). If terms that vanish together with
¢ are retained the degeneracy is removed and the

character of the spectrum is changed.

1. In the absence of the periodic field the
energy levels of the motion of a free electron in the
plane L H are expressed by the equation En
=pH(n + 1/2) and the eigenfunctions are

d.)h, n = ei' klxcp,l (y + dgkl)’
%o
where the ¢ are Chebyshev-Hermite functions. The
energy is independent of the quantum number kl
which determines the position of the ‘‘ center of

oscillation” of the electrons y = —o<.(2)k1 , since

all y ) are equivalent in free space. In a periodic-

field this equivalence disappears and the de-
generacy is removed. In the approximation of

‘weakly bound electrons (when the periodic field



