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Equations for the equilibrium distribution functions are obtained from the general dynamic 
equations, without making the assumption of the canonical character of the initial equilibrium 
distribution. In place of this a series of physical conditions are imposed of the type of the 
condition of diminishing correlations with increase of the distances between the particles. 

JF, for systems consisting of N similar interacting 
particles occupying a volume V, we postulate the 

existeJ£e of a class of distribution functions 1 •2 

ns (t, xi, ... 'X8 ), (l) 

f s ( t, x1 •.. , xs, yl, ... , ys), 

gs(t, xi, ... ' X8 , yl, ... , ys, zl, ... 'z5), 

(xi is a vector determining the position of the 
particles, yi a velocity vector of the particles, zi 
an acceleration vector, etc.), and if we subject 
these-distribution functions to the conditims 

~ · · · ~fs(t, X, Y) IT dyi = n5 (t, x), (2) 

i=l 

~- · · ~gs(t, X, y, z,) iJdzi=f5 (t,x,y), 
i=l 

(x andy denote, respectively, the sets of vectors 
1 s d 1 s A · 1· · x .... , x an y , ... , y ; IS a norma 1zmg 

factor), and if, besides, we require fulfillment of 
the equations 

r t 
a-r'~o 1T (4) 

X { ~ ... ~ gs (t-o~. X- yo'!:, y- zo-e, z) ii dzi 
i=I 

-~ ... ~gs(t,x,y,z)ITdzi}=O 
i=l 

and of analogous equations for the other distribu
tion functions*, then it is possible to obtain a 

* In the work of Born and Green 1 and in our previous 

article2 this condition is inaccurately written. The 
correct expression is the one presented above. 

system of basic equations ·of the kinetic theory 

at s at s "t .. 
_s + ~ _ __:~ i = _1 ~ _u_s a<J>'l (5) 
at _LJ ax' y m LJ ayi axi 

t~=l i, j 

·+ _1 ~s ~~ aq/• s+l at ~ dxs+I dys+1 
m i=L • axi ay' 

in the absence of external forces, for an interaction 
law given by a mutual potential <I>. 

As we demonstrated 2 , N. N. Bog~liubov' s e qua
tions for the system under consideration, the Max
well distribution, and (fors=N) the Gibbs distri
bution all follow from Eq. (5), in the determination 
of the eqilibrium state as well as of the stationary 
state of a system in which the distribution func
tion f factors into the product of two independent 

s 
functions giving, respectively, the distributions 
of the velocities and of the coordinates [ f 
= t/1 s ( x) cps ( y)]. A generalization of the ;esults2 

in the case of complex systems, consisting of 
particles of different kinds, has also been de
rived 3 • 

In constructing a kinetic theory independent, in 
a certain sense, of the results of statistical mech
anics, the theorem proved in Refs. 2 and 3 should 
be considered as a sufficient condition for obtaining 
an equilibrium solution. It is necessary to prove 
the necessity of the above-indicated properties of 
the equilibrium distribution functions for the 
dynamic states of complex particles. It is desir
able to derive this proof with the least possible use 
of special assumptions about the character of the 
law of interaction be tween the particles. 

Let us write Eq. (5) in the form 3 •4 

iJF8 (6) 
Tt = [fls; Fs] 

830 
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where F s represents the function f s' normalized in 
the manner of Bogoliubov, and where the momenta 
appear in place of the velocities. 

Let us assume that the density of our system is 
small enough that the expansion 

F F o -Ipl -2 2 
s = s + v , + v F, + ... (7) 

is meaningful. Considering henceforth a system in 
the absence of external forces, for the sake of 
simplicity, we shall look for solutions of the equa
tions 

[Hs; Fs] (8) 

Fs+J. J dqsH dps+I = 0, + ~ ~ [± <l>;. s+l• 

for the stationary state, subject to the conditions 
(7), assuming central forces of interaction. Be
sides the conditions enumerated in Eqs. (2)-(4), the 
equilibrium distribution functions must satisfy 
boundryconditions for relaxation of the correlations, 
having the form 

Fs(ql, · · ·, Ps)->- IT FI{q;, Pi) (9) 
I<i<s 

for all I q. - q. I -> oo • 

Let us 'subsfitute the expansion (7) into Eq. (8) 
and consider the corresponding systems of equa
tions. For the zero-order approximation of the 
unary function (single-particle distribution) we 
obtain 

-1 ( d 0 m P1gra F1) = 0, (10) 

from which it follows that F 0 can depend only on 
l 

pl. 
For the zero-order approximation to the s-dimen

sional distribution function, we ·have the following 
equation 

(ll) 

1 ( aF~ apo , 
- m Pt ~ + ... + P; a :) } = o, 

ql qs 

and conditions on the relaxation of the correlations 
of the form 

F~ - IT F~ _,. 0 
I<i<s 

for all I q.- q.l-> oo. The equations of the char-
• 1 

acteristics 

dqf dpi 

(f. = 1, 2, 3; i = 1' ... , s 

Possess 6s - 1 integrals of the motion: J ( q 
k l' ... ' 

P;-)=ck. 
Let us assume that the transition to the limit 

I I . " d" b . " . 1 q. - q. -> oo IS a w ahc ; 1.e., et us assume 
' 1 

that in the passage to the limit to be considered 
the limiting functions F~ depends on the same in
tegrals of the motion as the initial function F 0 • 

Since F 0 is an implicit function of q and p, s 
s 

lim F~ (J1, ... , Jss-I) 

= F~ (lim J1, ... , lim Jss-I)· 

If we set lim J k = f*k then, from the condition on 

the relaxation of the correlations, we obtain 

(12) 
or 

s 

lnF~(J;, .. . ) = ~lnFf(p;). (13) 

i=l 

Be cause of the fact that the F ~ are functions of the 

"s-body' problem, while the F~ are functirns of 
the "single-body" problem, it follows from (13) that 
in the limit ln F 0 depends only on additive in-

s 
tegrals of the motion and is made up of a linear 
combination of them. Not considering the uniform 
translational and rotational motion of the system as 
a whole, we obtain 

0 • * 
In F s (JI> •.. ) =a.,- ~w.. (14) 

where w: = lim H 5 • In this way the solution sought 

for will have the form 

F~ = Cs exp (- ~H,) (15) 

in connection with the "adiabatic" character of 
the limiting transition being considered; in par
ticular 

F~ = c1 exp (- ~PU 2m). 

In agreement with the conditions on the relaxation 
of the ccrrelations, c s = ( c 1 ) 5 , and from the normal-

ization conditions it follows that 
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cl = (~ exp (- ~P2 I 2m) dp r1. 

For the first approximation to the single-vari
able function 

and since 

~ [w12; F~ ]dq2dP2 

~ [I ( f-p~)d P~ ( ~Pi) = £..) C2 J exp - 2m P2 -;n'- exp - 2m 
a=l 

\ p~ ( ~p~) J X J In exp - 2m dp2 = 0, 

we deduce that F ~ can depend only on p 1 . From 

the nornalization condition it further follows that 
F ~ = 0. Analogously, we find that all the higher 
approximations for the single-variable functions 
vanish. 

Passing to the binary functions (joint distribu
tions), let us examine the equation 

2 

[H2; F~] +~[~<Pia; F~] dqadPa = 0; (17) 
i=l 

Using (15) we can write 

2 

~[~<Pia; F~] dqadPa 
i=l 

X (' _!_ exp f- ~ (<P1a + <P2a)J dqa j aq; 

(18) 

p(1. (' iJ 
+ n: j aq; exp [- ~ (<D1a + <D2a)] dqa J. 

On the other hand, setting 

F 1 0 • 
2 = F2 rp2, (19) 

for the particular solution of the inhomogeneous 
Eq. (17), we get 

Noting that 

Ca ~ exp (- ~p2 I 2m) dp = C2, 

we find a particular solution in the form 

(20) 

(21) 

The general solution of Eq. (17) is represented by 
the expression 

(22) 

where the constant b; rr,ust be chosen so that F ~ 

satisfies the condition on the relaxation of the 

correlations: F ~ -> 0 for I q i - q i I -> oo • Corre-

spondingly b~ is given by 

b; = - ~ (1 + fl3 + f2a) dqa, 

where fij = exp (- {3 <P ij) - 1, and F; can be repre

sented in the form 

(23) 

For F! we obtain in an analogous manner 

where 

Let us further consider the equations 

[H2 ;F~J+~ ~ [<Di3 ; F~]dq3 dPa=O. (25) 
1-<:;:i-<:;:2 

Substituting F! from (24) we obtain 
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X exp [- ~ (<D13 + <l>23)] 'f;dq 3 

+ p; C ~ exp [- 8 (<D1a + <D2a)l 'f;dqa] 
m J aq; , 

+ b:!] Fg [ ~l ~ "ao: exp [- ~ (<DI3 + <D2a)] dq3 
o: uql 

p: r a 
+ m J dq; exp [- ~ (<Dl3 + <D23)] dqa] = 0. 

Seeking a particular solution of the inhomogeneous 
. . h f F 2 F 0 ** h * * d equatwnmt e orm 2 = 2 Cfl 2 , w ereCfl 2 oes 

not depend on the momenta, we obtain 

o<p~* = \' ~ exp [- ~ (<Dla + <D23)] 
aql J aql 

>< {~ exp [- ~ (<D 14 + <l>24 + <Da4)] dq4}dq3 

+ b! _i!_ \ exp [- ~ (<D1a + <D2a)l dq3, 
oq~ J 

from which we find for the desired solution 

F~cp;* = ~ Fg ~ exp [- ~ (<Dla + <D23 

+ <D14 + <D24 + <Da4)] dq3dq4 

(26) 

+ b~F~ ~ exp [- ~ (<Dl3 + <D23)] dq3. 

We can then write the general solution in the form 

(27) 

and from our boundary conditions we obtain for the 
constant b; the expression 

2 1 \ 
b2 = 2 ) ( 1 + f 14 + f 24 + f 13 + b (28) 

+ fa4 + fd14 + fr3f24 + f14f23 

+ f23 f24- fda4f14- bf34f24) dq3dq4. 

Finally, F~ is represented by the product 

F2 FOL34 
2 = 2 12• (29) 

where the symbol L{24 designates a collection of 

integral terms determining all possible correla
tionalrelations between a fixed group of particles 

( l, 2) and the "running" group of particles ( 3, 4). 
In this faslion we have for the binary functions 

and for the ternary functions 

In connection with the fact that we are at the 
moment interested only in the question of the 
general structure of the solution (in the sense of 
.its multiplicity with respect to the dependence on 
coordinates and momenta) and not in the problem 
of the exact construction of all the higher approxi
mations, we shall examine only the "principal" 
parts of the particular solutions of the correspond
ing inhomogeneous equations, i.e, expressions of 
the form 

-· pO~ 
f~ = -f f.Lsf1s-t-l · · · f1s+i-ldqs+I · · · dqs+i• (30) 

l. 

f1s = exp (- ~ ± <Dj, s+I ); 
i=l 

where the superscript i indicates the order of the 
- i-1 

approximation. Postulating for F s+l the form 
(30), let us consider the equation 

~ s 

[Hs; F!J + ~ [~ <Dj, s+l; f!+i] dqs+1dPs+1· (31) 
i=l 

- i ( F 0 I . I ) i bt . 
Substituting F s = s ~ · Y s' we 0 am 

!._ Y F~{- P~ ar.! - ... - P~ ay; l 
t 7 m aq~ m aq~ 1 

Comparing corresponding terms, we can write: 

~ a:~ (!1s) ~ fts+t ... !t;,+i-1 dq, ! 1 dq,+2 ... dqs+i 

and since 

1 ay; 
aq~ 
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we arrive at the result 

1! = ~ fts P.s+I · • • P.s+i-ldqsH ... dqs-f-i. (32) 

The above reasoning serves as a proof by induc
tion of the correctness of the expression (30) for 
the "principal" parts of the particular solutions 

F i. F i differs from the exact solution Fi only 
s s s 

that in the latter additional terms are contained 
' 

while the structure of the solution F i coincides 
with the structure of F~ in the sense 8in which we 

are interested. To determine the exact solution 
F! it is always necessary to operate not with the 

" . . 1" f pnnc1pa parts o the particular solutions but 
with the complete solutions, i.e., with expre~sions 
of the type of Eq. (27), in which the constants bk 
are chosen with reference to the boundary condi-s 
tions on the relaxation of the correlations, as was 
~one in obtaining Eq. (28). Use of the general solu
tions does not essentially complicate the proof of 
the stated theorem and leads only to more cnmher
some expressions. We note, by the way, that the 
procedure considered by us also gives another 
method for the construction of the results of the 
theory of Ursell and Maier for the coordinate part 
of the distribution function. All the reasoning pre
sented above holds also in the presence of ex
ternal cmservative forces; in this case one must 
understand H the energy of the corresponding 

s 
group of particles including these external forces. 

We shall make a few remarks regarding the de
pendenceof theapplicahility of the above considera
tions on the character of the interaction law <I> ( r) 
between the particles and on the density of the 
system. If the interaction potential falls off with 
increasing r faster than r- 3, and if the density of 
the system is sufficiently small, the multiplicative 
structure of the equilibrium solution is that de
rived above, where in the second part of the 
theorem an essential role is played by the assump
tion of the adiabatic character of the transition to 
the limit in the condition of the relaxation of the 
correlations, in the sense indicated earlier. 

But if the potential <I> falls off with increasing r 
as r- 3 or more slowly, then the series representing 
the part of the solution depending on the coordin
ates diverges, and an additional investigation is 
necessary. For a potential of the form 

<l> (r) =- ar-n + br-m, 

(m > n) or <l> (r) = - ar-n + Ae-'"' 

the reasoning presented is correct for n > 3, i.e., 
for a "sphere of influence" of the intermolecular 
fon::es which is finite, hut not necessarily infin
itely small (small on the microscopic scale). 

Consequently, while in the considerations of 
Green 1 the smallness of the density of the system 
is not used, but rather the microscopic smallness 
of the "sphere of influence" is used (in essence 
a mechanism of instantaneous collisions is as
sumed), in the theorem presented above the oppo
site situation obtains: the smallness of the density 
of the system is explicitly used, while the micro
scopic smallness of the sphere of influence of 
intermolecular forces is not required; the size of 
the sphere of influence is limited simply by the 
formal requirement of convergence of the integrals 
appearing as coefficients of a series in powers of 
the density. In order to relax the requirements re
ferring to the density of the system and to the 
character of the interaction, as mentioned above, 
an additional investigation is necessary. 

Incmclusion, let us consider the example of a 
system on which, besides the conservative internal 
forces, external forces depending only on the 
velocities of the particles are also acting. 

The basic equation for the distribution function 
f in the most general case of arbitrary forces has 

s 
the form: 

ats ~5 ats 1 -·+ -y·+-at axi ' m 
i=l 

(33) 

where we have used the same notation as in Ref. 
3 and in Eqs. (l}-(5) of this article. Setting 

for the equilibrium solution, we obtain 

s { atjJ. 1 acps 
~ ax. 'fsYi + m ay. 
. ' ' L=l 

s 

(~ tJ!sFij + ~ Ys+1Fi. s+1dXs+1J 
i=l 

A necessary condition for the realization of an 

(34) 
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equilibrium solution, existing in the absence of 
external forces of the type considered above, is 
the simultaneous fulfillment of the following equa
tions 

(35) 

and, consequently, the forces F. must satisfy the 
condition ' 

(36) 

In particular it follows from (36) that gyroscopic 
forces will not disturb the equilibrium condition 
of the system. In an analogous way one can treat 
the more general conditions mentioned in Ref. 2. 

I take this occasion to express my gratitude to 
N .. N. Bogoliubov for proposing the problem, and 
also to M. A. Leontovich and Ia. B. Lopatinskii 
for discussion of questions connected with the work. 
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It is shown that the discrete energy levels of an electron in a crystal are widened into 
narrow bands in strong magnetic fields. The structure of the energy zone in a crystal lo• 
cated in a magnetic field is studied. The possible influence of the broadening on the 
de Haas-van Alphen effect is discussed. 

A FREE electron in a uniform magnetic field 
performs a finite motion 1 which corresponds 

to a classical revolution (at least in the direction 
rerpendicular to the magnetic field H). The mini
mum quantum-mechanical "radius" of this revolu
tion is 

oc0 = Vnc I eH. (1) 

In addition to the magnetic field the electron is 
acted upon in the crystal by a periodic electric 
field (the lattice constant will be designated by 
a), and for aU real fields H. 

(2) 

(thus, for example, with H rv 104 oersteds and a 
= 2.5 x 10-8 em we have f = 10-2 ). 

In the theory of electron motion in a crystal 
placed in a magnetic field the only terms that are 
retained (except in Ref. 2) are those which remain 
finite when f -> 0. As a result, the energy levels 

of the electron in a magnetic fi:eld are degenerate 
and depend, just as in the case of free electrons, 
on only two quantum numbers (see; for example, 
Refs. 3 and 4 ). If terms that vanish together with 
f are retained the degeneracy is removed and the 
character of the spectrum is changed. 

1 . In the absence of the periodic field the 
energy levels of the motion of a free electron in the 
plane ..1. H are expressed by the equation En 
= p. H ( n + 1/2) and the eigenfunctions are 

wh = ei· hlx(O (y + !X.~kl) 
i , n . n <Xo , 

where the Cf'n are Chebyshev-Hermite functions. The 
energy is independent of the quantum number k 1 
which d~termines the position of the ''center of 
oscillation" of the electrons y 0 =-a.~ k 1 , since 

all y 0 are equivalent in free space. In a periodic

field this equivalence disappears and the de
generacy is removed. In the approximation of 
weakly bound electrons (when the periodic field 


