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{1, x0 >0 
Yi (x) = 0, Xo < 0 ; 

and the summation in (3) is over the number of 
mesons n and the number of nucleons and anti
nucleons A. 

The matrix element of the S-matrix for a transi
tion of a meson from a state of momentum q to a 
state of momentum q 'is related to the Green's 
function in the following way: 

<p', q' Is I p, q> (4) 

=- ~ f;, (x) fq (y) KxKy (p' I x, yIp) dxdy, 

where f (x)= (2q or 112 exp [iqx] is a solution 
of the K~ein-Gordon equation; 

qx = qx- q0x0 , q0 = Y q2 + (1.2. 

Using this relation, and also the relations 

q 
+oo . 

1 \ e"'-X 
7J (x) = 2r:i J a- iE da. 

-oo 

we immediately obtain from (3) 

(p', q' iS jp, q) (5) 

] { ~ !X dtY. iE (p', q' +!X j S j :A, ql ... qn) 
Q1 . •. qn,.n, A 

().,qi···qnJSip, q+oc>• 

+\ ~(p',-q+cx.ISit-,ql···qn> j !X -IE 

(:A, ql·· .qn ISipJ,-q'+a>} 

+ ~ dxdy a (Xo-Yo) t;, (x) lq (y) (p' I [Kxcp (x), ~ (y)J-1 p). 

Here <Aq 1 ... qn ISip,q+01.> is the matrix 
element of the S-matrix for a transition of a meson 
with momentum q, energy q + 01. and a nucleon with 
energy-momentum p to a state with n rr.esons and 
A nucleons and antinucleons. The last term on tm 
right-hand side of (5) is zero if the interaction is 
linear in the meson field. If the sum in (5) is 
restricted to the states ( n = 0, A= 0) and 
( n = 1, A = 1 ) and we go over to matrix elements 
on the entr@' surface then we get Low's equation. 

We emphasize that the relation (5) with the 
restriction given above becomes an equality only 
if there is provided the inhomogeneous term 
( n = 0, A = 1), which depends on the concrete form 

of the interaction. The inhomogeneous term can 
be found exactly only in the limit q, q '_,0, 
therefore the applicability of the equation is essen
tially limited to the nonrelativistic domains of 
nuc~eon e.nergy and meson energy. For arbitrary 
q, q the mhomogeneous term can be expressed in 
terms of the exact renormalized one-particle 
Green's function and vertex part. Therefore, 
attempts to treat the equations found by Low 
relativistically run into kinds of problems· first 
h ' ' t e exact forms of the renormalized one-particle 

Green's function and vertex part are unknown, and 
secondly, as shown in the works cited, 3 the re
normalized Green's function possesses non
physical poles, reflecting the fact that the re
normalized coupling constant becomes zero. 4 

Note added in proof. Analogous questions are 
considered in recently appearing work. 5 
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A S is well known, the term ' ' isomer" denotes 
an excited state of a nucleus characterized by 

a long lifetime. The small probability of decay 
of such states may be due to a large difference 
between their spins andthat of the ground state 
(!'!I 2 3 ). I Besides this, the decay probability 
of the excited state depends substantially on the 
nature of the levels between which y -transitions 
are taking place, and in some cases (the nuclei of 
Lui77, TaiBI, Rei87, Np237, Pu239 and others) 

the decay probability turns out to be small ( and 
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the lifetime large), although the spins of the iso
meric states in the nuclei mentioned differ from 
the spins of lower levels by one or two units. 2 

In the present note, by ''isomeric states" we 
shall rr-ean only those states, whose larae life
time is due to a large difference of thei~ spin 
and the spin of the ground state; we shall fur
ther restrict our considerations to nuclei of odd 
mass number A. 

The explanation of the properties of such iso
meric states has been one of the most substantial 
successes of the one-particle nuclear shell 
model. 2- 6 Within the framework of this model it 
turned out to be possible to describe correctly, 
in the overwhelming majority of cases, the multi
polarity of isomeric transitions of type M4 and 
E3, and also to explain the concentration of 
isomers in the so-called ' 'islands of isomerism" 

39 .:S Z, N ~ 49: 63 ~z, N ~ 81; 93 ~Z, N~1253 • 4 • 
Out of the 86 known cases of isomerism in nuclei 
with. odd A only two (42 Mo ~l and 31Ga ~f ) lie 
outside of the boundaries of the islands while 
in four or five cases multipole order of isomeric 
transitions of type M3, E4 is observed which is 
not describable by the single-particle model. 

However, a more detailed analysis of isomeric 
states with the single-particle model meets with 
a number of difficulties. According to the model 
isomers with an odd number of protons and an odd 
number of neutrons .should occur equally often, 
and the boundaries of the islands for them should 
coincide. In reality it turns out that, in general, 
they do not coincide. Thus, in odd neutron nuclei 
isomeric states are observed with 63 ~ N ~ 81, ' 
while in odd proton nuclei, only with 77 -:;_z ~ 81. 

In the next island, 93 ~,N ~ 125, isomeric transi
tions described by the single-particle model 
(type M4) are observed only with N > 113 ( 10 
~ases)~ while ~n. nuclei with 93.~N .:S,115, only 5 
Isomenc transitiOns of an anomalous type ( E3, 
M3, E4) are observed. Finally, the single
particle shell model does not account for isomeric 
transitions of type E3 which occur with Z N = 41 
43, 45, 47.6 ' ' 

Recently, attempts have been made to over
come some of these difficulties5 • 7 •8 • However 
they cannot be regarded as satisfactory, since ' 
they do not explain all of the facts. It will be 
shown below that taking into account of the defor
mation of the nucleus makes it possible to remove 
a.ll of the ment~oned difficulties without any addi
tiOnal assumptions. From an analysis of various 
ex~erimental data (quadrupole moments, isotope 
shifts, etc.) it follows that the deformation of 
nuclei in which at least one of the shells (proton 
or neutron) is close to being filled, is small. For 

such nuclei, in calculating the single-particle 
levels in the first approximation, one can use a 
spherically-symmetrical potential of the same 
type as in the single-particle model. 5 For this 
reason, the states of weakly deformed nuclei may 
be. ~haracterized by an exact quantum number j 
( J IS the angular momentum of the odd particle), 
and hence they may be described in the terminol
ogy of the single-particle model as p · g · l/2' 9/2' 
d 512 ; d 312 ; hll/2 etc. For such nuclei all the 

basi~ results of the single-particle model hold, 
and m the overwhelming majority of cases one 
finds in these nuclei the usual isomeric transi
tions of types M4 or E3. However, as soon as we 
pass to nuclei in which both shells are far from 
b~ing filled.' the situation changes essentially, 
smce here It becomes necessary to take into 
account the nonsphericity of the nuclei. In 
such nuclei the potential will not be spherically 
symmetrical. In the case of axial symmetry in 
deformed nuclei, not the total angular momentum 
j, but its projection n on the axis of symmetry, is 
an exact quantum number. 

In order for the phenomenon of isomerism to 
occur, it is necessary that either the ground or the 
excited state of the nucleus possess a large spin 
I = 0 = 9/2, 11 /2 or 13/2. In slightly deformed 
nuclei, large values of the spin I = j will occur in 
all nuclei with an odd number of nucleons in the level 
j. It is easy to show that in filling the levels 
j = 9/2,; 11(2; 13/2 the number of such nuclei is 
5,6, 7 L (2J + l) /2 ] . At the same time in nuclei 
with a marked deformation, the maximum value of the 
spin I= D = j occurs only once since in a level 
with a given D (in particular, the largest one) 
only two nucleons may be present. Thus it may 
be expected that levels with large spins in de
formed n~clei will occur considerably more rarely 
than predicted by the single-particle model. Since 
the deformation rerr:oves the degeneracy of the 
energy levels in the quantum number Q , their 
number is considerably increased. As a result, 
the probability of occurrence of levels with 
strongly varying spins ( ~ I :2::.3) next to each other 
is substantially reduced. ' 

The two above-mentioned factors have as a con
sequence that in strongly deformed nuclei ( 63 < 
Z ~ 75; 93 -:;_N-:;__ 115) favorable conditions for-the 
existence of isomeric states are not realized. If 
one uses the single-particle level scheme obtained 
by Nillsen which takes deformation into account10 

it is possible to indicate in which nulcei of ' 
this region isomeric states should occur, and also 
to determine the possible multipolarities of the 
transitions into these levels. An analysis based 
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on this scheme shows that such nuclei must be: 

66Dy 95165 with isomeric transition of type E3 2; 

'If i79 (E3 l\''3)2. WI 183 (E'3 '1'~3)2· W185 
72h 107 ' j '74''109 'VJ '74 111 

(E3, M3 )2 ; 760s 1 i~ 1 ( M3 + E4 ) 11 ; as well as 

68Er9~67; 72Hf10~77; 70 Yb 101171. In the first 

five nuclei isomeric states have already been 
observed, and their expected multipolarity (which 
agrees with experimental data) is given in paren
theses. In an analogous manner it is possible to 
explain the absence of an isomeric state in the 
h . . T 1o 1 12 · th · eaviest Isotope 4 3 c 56. , smce IS nu-
cleus is more strongly deformed than the lighter 
isotopes Tc 93 "99 in which isomeric states are 
observed. Taking account of deformation makes it 
also possible to explain the appearance in the 
island 41 ::;_ Z, N ,~ 47 of isomeric transitions 
of type E3 9. 

Thus, taking into account of deformation makes 
it possible to explain the absence of isomeric 
states in nuclei with 63 ::;_ Z ::;_ 75. the small 
number of isomeric transitions and their anoma
lous multipolarity with 93 <;;..N ::;.ns, as well as 
the absence of an isomeric state in Tc 101 and 
the appearance of transitions of type E3 in the 
region 39< Z, N < 49. 

In conclusion, it is a pleasant duty to express 
my deep gratitude to L. A. Sliv for detailed 
discussion of this papa-. 
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T HE energy spectrum of a fast ionizing particle 
after passage through a thin la~r of matter 

for which the average energy loss t1E < < E is 
determined by the relation 

S == tl.Efc:maxLi. 

where L i is the well-known ionization logarithm 
and f max (E) is the maximum energy loss per 
ionizing collision where m is the electron rest 
mass, 

( 
2m[32 \ 

Li = 2 In Jcp (1- [32)- [32)• (l) 

2m (£2- lL2) 
c:max = " , i3 = V/C, 

[L" 

where m is the rest mass of an electron, p. the rest 
mass of the ionizing particle and I is the ioni-ave 
zation potential. If W (£,E) is the probability 

per unit path length of a collision with an energy 
loss£, then the distribution function for energy 
loss t1 after passage through a layer 8 x has the 
form 1• 2 : 

f(Sx, tl) = (21tp (2) 
00 <lO 

X~ dz exp {iztl- oX~ w (e, E) (1-e-ize)de:}. 
-00 0 

For S « l Eq. (2) gives the curve due to Landau, 1 

and for S > > l it yields a Gaussian distribution. 2 

For the case of a thick layer ( S > > l) we shall 
obtain a more accurate distribution function than 
the Gaussian. If we allow firsts >> l, but with 
M << E, then the distribution function can be 

expanded in Hermite polynomials: 

tp (Sx, y) = (21t)-'lze-Y 212 ( 1 + ~ anHn (y) ); (3) 
n:>3 

00 

= (n!p ~ tp (Sx, y) H 12 (y) dy, 
-co 


