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decrease as well. However, the measurements of 
Kashaev3 show that the halfwidth increases at 
first with dilution, reaches a maximum at some 
value off and then decreases with further dilution. 
The increase of the halfwidth at small dilutions 
may not even contradict an increase in the quantity 
X at the same time. 

Indeed, such case was observed by Kumagi 
et al 4 who studied the change of the halfwidth 
of the curve with the change in separation d 
between two neighborhood paramagnetic ions. In 
particular, with a decrease in d (as long as the 
volume forces are small) the halfwidth increases 
with an increase in the quantity X though the 
latter is very small. The halfwidth reaches a 
maximum and then, as the volume forres begin to 
increase rapidly, it begins to decrease. 

A direct comparison of the theoretical moments 
with the experimental data cannot be carried out not 
only because the available curves are not measured 
on sides (only halfwidths were measured) but also 
because the insufficient sensitivity of the present 
experimental techniques makes a careful investiga­
tion of the absorption curve (particularly its sides) 
of solid solutions almost impossible since the ab­
sorption decreases rapidly with dilution. 

In conclusion the authoc expresses a deep gratitude 
for the valuable advice and discussions to C. A. 
Al'tshuler and B. M. Kozyrev. 

1c. Kittel and E. Abrahams, Phys. Rev. 90, 238 
(1953). 

2 
J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 

3Kh. Kashaev, Dissertation, KF AN, 1 954. 
4Kumagai, Ono, Havaski, Shimada, Shono and 

lbamoto, Phys. Rev. 83, 1077 (1951 ). 
Translated by M. J . Stevenson 
124 

Nonlinear Equations in 
Quantum Field Theory 

V. }A. FAINBERG 

P. N. Lebedev Physical Institute 
Academy of Sciences, USSR 

(Submitted to JETP editor, October 25, 1955) 

J. Exptl. Theaet. Phys. (U.S.S.R.) 30, 
608-609 (March, 1956) 

T fi..E purpose of the present note is to show 
that the equations gotten by Low 1 follow from 

general relations for the Green's function which 2 
were found by Lehman, Symanzik and Zim~~r~a~ ' 
starting from general requirements of relatiVIstic In­

variance, causality and boundary conditions. For 
simplicity, the proof is carried through foc the 

example of the equation for the Green's function 
of the meson-nucleon system, which is simply 
related to the matrix element of the S-matrix for 
the scattering of mesons by nucleons. 

The Green's function of the meson-nucleon 
system is defined in the following manner: 

"t' (xx'; yy') (l) 

= ('¥0, T {rp (x) 'Jl (y) cjJ (x') ~ (y')} '¥0), 

where 'l' is the state vector of the physical 
0 

vacuum in the Heisenberg representation and 
t/J (x) and ::p(x) are the Heisenberg operators corre­
sponding to the nucleon and meson fields. For 
simplicity the meson is taken to be neutral. 
Instead of T( x x '; yy ') it is convenient to consider 
the quantity 

<p'lx,y I P> (2) 

: ~ dx' dyuP,(x') y 4 "t'(xx', yy')y4 up(y'). 
Xo-+ +co, Yo-+ -oo 

= (o/P' T {rp (x)rp (y)} 'Fp)· 

where u (x) is a solution of the free Dirac 
equatioC for particles with momentum p and 
energy p = y'~ M2, and 'l' is the state vector 
of one n~cleon in the Heiseniferg representation. 

If causality and the boundary conditions are 
employed then, analogously to what is done in 
He£. 2, it is possible to obtain relations of the 
following form for the Green's function: 

co 
(3) 

(p' lx,yl p)= ~ ~(-i)n {-7J(x-y) 
n=o t. 

X~<+> (~1-rh) ... ~H> (~n -1Jn) K11 , ••• K11n 

(pI Y, 1J1 ·. · 1J11 I A)* d~1· ... d~nd1J1 ... d1Jn 

+ 1J (y-x) ~ Kr;, ... Kr;n (p' ly, ~1· .• ~n I A 

> ~<+> (~J -1)1) · · • ~<+> (~n -1)n) 

XK11 , • •• K11n (pI X, '1J1 .•• '1Jn I A)* d~1 ... d~nd'1J1 ... d'1Jn}. 

Here Kx = a X- p. 2 where p. is the renorrnalized 
meson mass;* designates the Hermitian conju­
gate; 

M (x) = - i (27t)-3 ~ dq'/5 (q 2 + [L 2) eiq.~ 1J (q) 

is a commutator function; 
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{1, x0 >0 
Yi (x) = 0, Xo < 0 ; 

and the summation in (3) is over the number of 
mesons n and the number of nucleons and anti­
nucleons A. 

The matrix element of the S-matrix for a transi­
tion of a meson from a state of momentum q to a 
state of momentum q 'is related to the Green's 
function in the following way: 

<p', q' Is I p, q> (4) 

=- ~ f;, (x) fq (y) KxKy (p' I x, yIp) dxdy, 

where f (x)= (2q or 112 exp [iqx] is a solution 
of the K~ein-Gordon equation; 

qx = qx- q0x0 , q0 = Y q2 + (1.2. 

Using this relation, and also the relations 

q 
+oo . 

1 \ e"'-X 
7J (x) = 2r:i J a- iE da. 

-oo 

we immediately obtain from (3) 

(p', q' iS jp, q) (5) 

] { ~ !X dtY. iE (p', q' +!X j S j :A, ql ... qn) 
Q1 . •. qn,.n, A 

().,qi···qnJSip, q+oc>• 

+\ ~(p',-q+cx.ISit-,ql···qn> j !X -IE 

(:A, ql·· .qn ISipJ,-q'+a>} 

+ ~ dxdy a (Xo-Yo) t;, (x) lq (y) (p' I [Kxcp (x), ~ (y)J-1 p). 

Here <Aq 1 ... qn ISip,q+01.> is the matrix 
element of the S-matrix for a transition of a meson 
with momentum q, energy q + 01. and a nucleon with 
energy-momentum p to a state with n rr.esons and 
A nucleons and antinucleons. The last term on tm 
right-hand side of (5) is zero if the interaction is 
linear in the meson field. If the sum in (5) is 
restricted to the states ( n = 0, A= 0) and 
( n = 1, A = 1 ) and we go over to matrix elements 
on the entr@' surface then we get Low's equation. 

We emphasize that the relation (5) with the 
restriction given above becomes an equality only 
if there is provided the inhomogeneous term 
( n = 0, A = 1), which depends on the concrete form 

of the interaction. The inhomogeneous term can 
be found exactly only in the limit q, q '_,0, 
therefore the applicability of the equation is essen­
tially limited to the nonrelativistic domains of 
nuc~eon e.nergy and meson energy. For arbitrary 
q, q the mhomogeneous term can be expressed in 
terms of the exact renormalized one-particle 
Green's function and vertex part. Therefore, 
attempts to treat the equations found by Low 
relativistically run into kinds of problems· first 
h ' ' t e exact forms of the renormalized one-particle 

Green's function and vertex part are unknown, and 
secondly, as shown in the works cited, 3 the re­
normalized Green's function possesses non­
physical poles, reflecting the fact that the re­
normalized coupling constant becomes zero. 4 

Note added in proof. Analogous questions are 
considered in recently appearing work. 5 
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A S is well known, the term ' ' isomer" denotes 
an excited state of a nucleus characterized by 

a long lifetime. The small probability of decay 
of such states may be due to a large difference 
between their spins andthat of the ground state 
(!'!I 2 3 ). I Besides this, the decay probability 
of the excited state depends substantially on the 
nature of the levels between which y -transitions 
are taking place, and in some cases (the nuclei of 
Lui77, TaiBI, Rei87, Np237, Pu239 and others) 

the decay probability turns out to be small ( and 


