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The free path length of a nonlocalized exciton in a polar crystal is calculated for high 
and low temperatures, taking into account the interaction of the electron and hole, which 
form the exciton, with the thermal vibrations of the lattice. 

INTRODUCTION 

JN an earlier article by the present authors 1, de-
voted to the free path length of a nonlocalized 

exciton in an atomic crystal, the general que!'tion 
of the existence of excitons was considered, and 
experimentd resilts supporting this existence were 
presented. In the present article we give results 
concerning the cdculation of the free path length 
of a nonlocalized exciton in a polar crystal at 
high and low temperatures, omitting the details 
of the computation, since they are similar to the 
calculations of the earlier article. 

We shall, as before, consider a nonlocalized ex­
citon as a h)drogenlike formation, made up of m 
electron and a hole, described by the wave function 

_,_ v-'f, ikR( 3 )_,,, { 1 } 
'fex = e 'ltaex exp - r aex . (1) 

Here V is the eliiDentary volume of the crystal, k is 
the wave vector of the forward motion of the ex­
citon, Rand r a-eralius vectors of the center of 
inertia~£ the exciton and of the electron relative 
to the hole, that is, 

where 11 1 , 112 and rl' r 2 are the effective masses 
and radius vectors of the electron and hole (we 
shall continue to use the index l to refer to the 
electron and 2 to refer to the hole). The ''Rohr 

radius of the exciton" is 

where x is the optical dielectric constant and 
11 = /11/12/ ( h + 112 ) is the reduced mass. The 

energy corr~onding to the state (l) of the ex­
citon is 

where the mass of the exciton is p. = " +" ex r1 r2· 

(3) 

(4) 

Dykman and fllkar 2 have shown that localized 
excitons are formed in polar crystals only under 
the conditions 11 1/112 > 10 (or p./p.1 > 10 ). In 

the treatment which follows we shall suppose that 
the ratio of the effective masses of the electron 
~nd hole does not reach such large values, that 
Is, that we have to do with a nonlocalized ex­
citon. It should dso be noted that, apart from the 
slow docrease of the Coulomb field with distance 
the application of the hydrogenlike exciton modeia 
is justified, from our point of view to the same 
extent to which the application of ilie method of 
effective masses to electrons and holes in kinetic 
phenomena is allowed. 

The intera:tion of an exciton in a polar 
crystal with the thermal vibrations of the lattice 
is dependent on the interaction of the electron 

and hole with the optical branch of the vibrations. 
w~ shall, in wh.a~ follows, c?ncern ourselves only 
With those collisions of excitons with phonons in 
which an internal excitation or dissoci~tion of the 
exciton does not occur. For collisions of an ex­
citon with a phonon of the optical branch of the 
vibrations, for minimum excitation of the exciton 
the conservation laws give ' 

k+q = k', 
(5) 

1i 2k2 1i 2k'2 

2;L + hwo = - + E 
ex 2fLex 1• 

(6) 

Here q is the wave vector of the phonon cu • 
h f . • O IS 

t e requency of the optical branch of the 
vibrations (we shall consider cu 0 as independent 
of~) ~dEl= 3/4 11.E is the minimum energy of 
excitatiOn of the exciton. 

From (5) and (6) it is easy to show that the 
con~it.ion o~ nonexcitation of the exciton during a 
colhswn With a phonon of the optical branch has 
the £orm: 

(7) 

For an overwhelming number of excitons we may 
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replace f by 3/2 k T in this expression; thus, 0 . 

Since in polar crystals x 2 '"'-' 5, we have 
E 1 "-' p./me ev. The energy 1r,w0 is of the order 

of hundredths of an electron volt. ffence, if the 
ratio p./me is not very small, then the inequality 
(7a) will be fulfilled up to high temperatures, of 
the order of thousands of degrees. 

Ry substituting E 1 = 0 (the exciton is not ex­
cited) into (6), it is easy to determine the lowest 
and highest values of q for high and low tempera­
tures. For high temperatures ( k 0T » 1i w 0 ): 

qmln = 0, qmax = 2k. 

For low temperatures ( k 0 T «11, w0 ): 

qmin = V2[1exWo/1i+k2 -k, 

qmax = V 2[1exWo / 1i + k 2 + k. 

(8) 

(8a) 

ln calculating the free path length of the ex­
citon we .ball make the assumption that the 
average time of the free path between two succes­
sive collisions with the lattice vibrations is much 
less than the average lifetime of the exciton. 

PROBABILITY Wkk'FOR AN EXCITON TRANSITION 

DURING ABSORPTION AND EMISSION OF A PHONON 

As the energy of excitation U for the interaction 
of an exciton with the vibrations of a polar lattice 
we take the energy of interaction of the electron 
and the hole with the optical branch of the vibra-
tions4: . 

q q 

Here Z is the charge number of the ions, M 
= M 1M2/ ( M 1 + M 2 ) is the reduced mass of the 

ions, a 0 is the lattice constant, N is the number 
of cells in the fmdamental volume of the crystal 
V, C 1 is a constant of the order of unity, taking 
account of the deformation of the electron shells 
during collisions of the ions, the a are the 
normal coordinates of the lattice vifirations. An 
analogous expression, depend1ng on t. 2 , may be 
written for cp 2 q (r2 ), that is, for a hole. The 

constant C 2 will be different from C 1 , since the 
electron and the hole are in different quantum 
states. 

The wave function for the zeroth approximation 
of the system, consisting of exciton and crystal, 
has the form 

(lO) 

xexp {- r I aex} n (I>Nq (aq), 
q 

where <f>N (aq) is the oscillator wave function of 
q 

the normalized vibration a . 
Calculating the matrix el:ment of the transition 

by the general rule 

we obtain for the transition probability associated 
with the rusorption and emission of phonons the 
expressions: 

W~k' = wNqQ (q) a (ek'- ek -1iw0), (12) 

W;k'= w (Nq + 1) Q (q) a (ek- ek + 1iw0). 

ffere w = 8rr3 Z 2 e4 C21!VMa3 w q2 N is the 0 0 • q 

quantum number of the normal vibrations, o is a 
delta function expressing the law of conservation 
of energy and 

where {3 1 = xiz 2/2p. 1e 2 , {3 2 = xiz 2/2p.2 e 2 and 

s = C 2/ C 1 • In order of magnitude f3 1 and f3 2 are 

equal to a • 
ex 

FREE PATH LENGTH OF AN EXCITON AT HIGH AN> 
LOW TEMPERATURES 

The free path length of an exciton is l = TV. 

The velocity of the exciton is v = 1r, k/u while 
rex' 

at high temperatures (k 0T »1iw0 ) the relaxation 

time Tis detErmined by the formula 5 

(13) 

Calculation gives 

(14) 
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Here l 1 is the free path length of an electron with 
energy £equal to the energy of the forward motion 
of the exciton. The function F(x), depending on 
the dimensionless variable x = a2 k 2 = 2p. a2 £/h2 

ex ex ex ' 

determines the deviation of the free path length of 
the exciton from the free path length of an elec­
tron of the same· kinetic energy: 

(l4a) 

+ 1 (t 1 ) 
3cx~ (1 + cx~x)a -

+ X + («1)4 X )] 

1 + ot~X ots 1 + aix ' 

where o: 1 = P./P.ex and o: 2 = p.2/p.ex· Thus, the 

function F (x) depends only on two parameters: 
s = C/C 1 and g = p./p.1. 

In the specid cases when g = l or g » l or 
s = l, the function (l4a) becomes simpler. In 
order to obtain a more visual representation of the 
change of the free path length of the exciton 
with the change in.its energy, curves (Figs. land 
2) were drawn up. The dimensionless kinetic 
energy a= a~xk2 is plotted as abscissa and the 
function F (x; s, g) is plotted as ordinate. In 
Fig. l, g = 10 for all the curves, while the para­
meter s ranges in value from 0.3 to 2. In Fig .. 2 
granges from 1.2 to 10, while s varies within the 
narrower interval from 0.85 to l.l. The general 
aspect of the curves in Figs. l and 2 shows that 
the function F ( x; s, g) has a maximum in those 
cases where for g > l the ratio of the correspond­
in,g polarization constants s < l. In such cases, 
the nearer s is to unity, that is, the smaller the 
difference between C 2 and C 1 , the smaller is the 

value of x at which the max:imum occurs. If g and 
s are both larger (smaller) than unity, then the 
function F ( x; s, g) decrease monotonically with 
increasing x and decreases more steeply the 
closer s is to unity. It must be kept in mind, 
however, that, in accordance with (7), the theory 
applies for such times as 

In thermal equilibrium £ = 7 = 3/2 k 0T for the 

I 
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FIG. I. g = P./p.1 = 10 for all the curves. s = 0.9 for 
curve /, s = 0.8 for curve II, s = 0. 7 for curve Ill 
s = 1.15 for curve IV, s = 1.07 for curve V, s = ;.0 
for curve VI, s = 0.3 for curve VII. 
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FIG. 2. g = 10, s = 0.95 for curve/; g = 5, s = 0.9 
for curve II; g = 3, s = 0.85 for curve Ill; g = 1.2, 
s = 1.1 for curve IV; g = 5, s = 1.1 for curve V. 

overwhelming number of excitons; hence, for them 
the factor 11 does not depend on the temperature, 
and the curve F ( x; s, g) gives directly, in rela­
tive units, the dqJendence of the free path length 
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of the exciton on the temperature. On the other 
hand, it must be kept in mind that if we consider 
the free path length- as a function of the average 
energy( of the exciton, then the change in x has 
not only an upper limit but also a lower limit: 

(15a) 

If we consider p. 1 = p.2 =me and x 2 "' 5, then the 

order of the interval in which x lies is from 0.01 
to l. 

For low temperatures ( k0 T « 1t w 0 ) the possi-

ble values of q for phonons interacting with ex­
citons lie in the narrow interval (8a). Thus, the 
magnitude of f3i, 2 q2 in Q(q) [see Eq. (12a)] is 

equal, in order of magnitude, to 

r-~2 2 ~ 82 2tLexwo _me (tLl + tl-2) X2 1iw0 (16) 
t'l.2q ~ ' 1.2 -h- - 2 v. . 

4tL1.2 • 

where vi = 13.5 ev is the ionizing energy of a 
hydrogen atom. Since 1t w 0 is of the order of a 
few hmdredths of an electron volt, while the fac­
tor me (h + p. 2 ) x 2 / 4p.i_ 2 is of the order of 

unity, then (16) is of the order of 10-3 • 

If, on the other hand, the absolute ~agnitude of 
the difference ( 1 - s) is not less than 10-2, that 
is, if it is larger in order of magnitude than f3i 2 q2, 

then we may put ' 

Q(q) = (l-s)2. (17) 

~n this case the transition probabilities (12) and 
~12a) differ from the usual ones only in the con­
stant factors ( 1 - s ) 2 ; hence, the calculated free 
path length of the exciton is equal to4 : 

(18) 

- l fl-1 1 
- 1 tL1+tL2(i-s)2 " 

Fere l 1 is the free path length of an electron with 
energy equal tothe enetgy of forward movement 
of the exciton L If 1- s I "" 0.1 and 
f.L/ ( p. 1 + p.2 )"" 1, then l is 100 times as large 

as 11 • We do not consider the more complicated 
case where Q (q) may not be replaced by the con­
stant value (17). 

It should be noted that for sufficiently low 
temperatur~s the free path length of an exciton 
will probably be determined not by the interaction 
with the thermal vibrations of the lattice, but by 

scattering from impurities and defects in the 
crystal. 

We make a remark concerning a localized ex­
citon in a polar crystal, an exciton which is 
formed, according to Dykman and Pekar 2 , only 
for a large ratio p. 2/p. 1 (or p./p. 2 ). As these 

authors have remarked, a heavy particle here 
acts like a polaron, but a light particle acts like 
an F-center electron. An analysis of the question 
indicates that the free path length of such an 
exciton coincides in order of magnitude with the 
free path length of a polaron, corresponding to a 
heavy particle. 
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