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to the abscissa, thus indicating an l=O. However, 
the intensity is rather low and this result is not 
too certain. 

We furthermore could obtain similar data for the 
levels of Al28 at 5.128 aud 5.435 mev (curves 
d and e of Fig. 2). According to Ref. 4. there are 

some more levels in their vicinity which could not 
be resolved here. However, since according to the 

same work4 the intensity of the groups we observed 
is almost an order of magnitude larger than that of 
the neighboring ones, the shape of the curves is 

mostly determined by these two group~. Accordi?g 
to our estimates frorn Tl efs. l, 7 as descnbed above It 
seems likely that the transition to the level at 
5.128 mev (furve d)involves an l-=3, and henee the 
parity of this state would be odd while the spin 
could have a value between 0 and 6. Analogously, 
curve e indicates for the level at 5. 435 mev a 

transfer of l=l and hence odd parity and a spin be
tween l and 4. 
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A generalization of the results of Bogoliubov 1 in the_ zone (single-electron) ~pproxima
tion is worked out for the case of the presence of an excited state. The expressiOn ob
tained for the energy spectrum permits a direct judgment on the combination of two zone 
states. 

I. INITIAL HAMILTONIAN OF THE PROBLEM 

I N the well known investigations of Bogoliubov 1 

on the theory of metals, the simplest case of s 
electrons was considered. The eigenfunction of the 
&ystem of electrons in the crystal corresponding to 
this case was sought in the form of a linear combi
nation of antisymmetrized products composed only 
of eigenfunctions of the lowest atomic energy 
level. Moreover, improvement of the accuracy of 
the method requires, as is well known, the consi
deration, along with the eigenfunctions, ofthe eigen
functions of the succeeding energy levels, in par
ticular when they are close to the ground state. 
Solution of a similar problem for the case of the 
excited state is also the purpose of the present re
search. In this case we limit ourselves only to the 
electron zone approximation, since calculation of 
the interaction of the e lectrons complicates all the 
considerations considerably, and requires indepen
dent consideration. 

Following Bogoliubov, we consider the crystal

line lattice with ''frozen" positive ions, and 
limit ourselves to the case of monovalent metals. 
For such a crystalline lattice, the secular equation~ 
are written down in the monograph 1 cited above in 
the representation of second quantization and their 
detailed investigation is carried out for the case of 
the s-state. In this case the index ,\=(l,m)(the 
aggregate of orbital and magnetic quantum num
bers) drops out everywhere in general in the Bogo
liubov formula. If we calculate the p-state along 
with the s-state, then the index A will have four 
values: (0,0), (l ,l ), (l ,0), (l ,-1), which naturally 
complicate all the calculations greatly. There
fore, it seems quite appropriate to consider initial
ly .the simplest possible case - nondegenerate 
p-states, i.e., to consider that the p electron of 
the free atom is described by one real eigen
function, and not by three. In this case, let A=O 
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everywhere characterize the s-state, and ~=lthe 
p-state. This assumption naturally simplifies the 
problem. For initial orientation, we find it ap
propriate to limit ourselves to the consideration of 
such an artificial case, which is a crude approxi
mation to reality. 

Thus in the approximations assumed above, the 
initial Hamiltonian of the problem in the represen
tation of second quantization has the form (see 
Ref. I, p.l28, Eq. 4.36); 

H = Uo + Y:,Le (f, ),; f', J.') aJt-craf'l/cr. (1 .1) 

Here summation is carried out over all indices; U 0 
is the constant potential energy of electrostatic 
interaction of the ions; f= ([1 , f 2 , f3) are the car
tesian coordinates of the ion in the crystalline 
lattice; A=(0.1) are the indices which characterize 
the normal and excited states; a= ( + 1 /2, - 1 /2) 
are the two possible values of the spin quantum 
number; af,~a , af",\a are the Fermi amplitude opera-

tors; 

Le (f, J.; /', J.') 

= ~ Gp, (q) {- ~: L\q + V (q)} Gf''-' (q) dq, 

where q= (q 1 , q 2 , qg.) are the cartesian coordinates 
of the electron, 2rrh is Planck's constant, 11 is the 
mass of the electron, L\ is the Laplace operator, 
V (q) = ~ U / q) is the periodic potential of the 

ionic lfttice, ef,\ (g)= {efo(q), efl (q)!are the 

orthonormalized atomic functions of the normal and 
excited states of the electron. The index e in 
Le (fA; fA:) denotes that to the potential of the ionic 
lattice is added the potential of the mean distribu
tion of the charge of the electrons. Summation over 
f in (1 .1) is extended over all fundamental direc

tions of the crystal. 
For what follows, it is appropriate to rewrite 

the Hamiltonian (1.1) differently, removing the 
sums over ,\ and ,\' in it. Then the initial Hamil-
tonian is written in the following form: 

H=U0 (1.2) 

Our problem now consists in the transformation of 
Eq. (l .2) to diagonal form. 

2. DIAGONALIZATION OF THE HAMILTONIAN 

The first step in the solution of the problem 
formulated in Sec. 1 consists in the transition 
f h A d"' • ( rom t e operators afoa an afla m 1 .2) to the 

new .Fermi operators akoa and ak 10. These new 
A 

~perators are related to the operators a faa and 

afla by (see Ref. 1, p. 136): 

a! = N-'l• ""'eilhf) ah ·a_, = N:_'1• ~ e-ilhfla · ccr ...::::.J ocr, ocr .L.J /Ocr• 
1: f 

" '12 " " 'I " a1 = ~ ' eilhfla11 · a11 = N- , ""1 e-iU•fla lo , la• lCJ .L.J /lCJ• 
h f 

Making use of these relations, we obtain from 
(1.2): 

(2.1) 

h,a 

+ Wu (k) G.t1aah1a + W'o1 (k) at.oaG.tna 

+ Ww (k) G.kloaaoa}, 

where (A, ),' = 0, 1) 

Wn, 
(2.2) 

=.fe-iifhl~ Gt-(q- f){-~: L\q+ V(q)}Gt-, (q)dq 

= ~ e-i(jh)Le'-"A' (/). 

f 

To diagonalize Eq. (2.1 ), we turn to the method 
which has bee~ appl.iedrecently in a number of re
searcpes. 2 1< ~ thts purpose, we define the opera-
tors b k 00 and b k la by means of a canonical trans-

formation [for the definition of S, see below, Eq. 
(2. 7) ]: 

G_hoa = e-iSflkoaeiS; 

G_klo = e-iSbklaeiS; 

"'-+ • "+ ( ) akoa = e-tSbkoa eis; 2.3 
A+ o "+ 

a1<1a = e-tSbh1,eis. 

Then the Hamiltonian (2.1) transforms into the 
Hamiltonian U, so that 

H = e-iS:ffteis, (2.4) 

(2.5) 

Further, we represent (2.4) in the form of an 



528 Iu. M. SEIDOV AND V. S. GAL ISHE V 

infinite series 

H = :lt- ;, [S, :lt]- ;, [S, [S, .1t]] 

+ ~ [S, [S, [S, .9't]]] 
<1. 

(2.6) 

+ 411 [S, [S, [S, [S, .rt]]]] + ... , 
where S is a generating function which we define 
in the following fashion: 

S = i] {<Ill (k) b~labkoa + 1>2 (k)b~oablaa}, (2. ?) 
k 

where the coefficients <1>, (k) and <I> (k) are primi
tive unknown functions of the propaiation vector 
k. 

With the help of lengthy, but •elementary, cal
culations, it is now easy to find all the expressions 
entering successively into Eq. (2,6). Below we 
write the result of the appropriate series of calcu
lations: 

(2.8) 

- (Wo1 (k) <I\ (k)- W 10 (k) 1>2 (k)) A1 (k) 

+2 (Woo (k)-W11 (k)) 1>1 (k) 1>2 (k) A2 (k)} l;~oabkoa 

+] {W11 (k) 
k 

+ (Wol (k) 1>1 (k)- W10 (k)<I>2 (k))A1 {k) 

-2 (Woo (k)-Wn (k)) W1(k) 1>2 (k) · A2 (k)} t•t1abh1a 
+ ~{W10 (k) 

k 

- 2 ( Wol (k) 1>1 (k)- W10 (k) 1>2 (k)) 1>1 (k) A1 (k) 

+(Woo (k)- Wu (k)) <I>1 (k) A1 (k)} b;.labkoa 

+ ~ {W01(k) 
k 

+ 2 ( Wol (k) <l>1 (k)- W10 (k) 1>2 (k)) 1>2 (k) A2 (k) 

- (Woo (k)- lf" 11 (k)) 1>2 (k) A1 (k)} b~oabl!1a, 

where A 1 (k) and A2 (k) are given by 
"<:\) 

.A1 (k) = H ~ (4<1>1 (k) <ll2 (k))n sh 2 V<D;(k) Q>2 (k). 
=I (2n + 1)! 2 V <Dt (k) <l)a (k) ' 

All (k) = ~ (2.9) 
co + ~ (4<D!(k) <D2 (k))n _ ch 2 Y <D1 \k) <lla (k)- 1 
"-l (2n + 2)! - 4<DI{k} <ll2 (k) • 

n=l 

If we substitute Eq. (2.9) in (2.8) and set the 
curly brackets equal to zero (which stand in front 

of the nondiagonal products of operators b kM- ), 

then it is not difficult to show that 

<I> (k) = _ W0t (k) <I> (k)·· 
2 Wlo (k) 1 ' 

(2.1 0) 

t 21>1 (k) VW01 (k) = _ 2 VW1o (k) W01 (k), 
g Wto (k) W'00 (k)- Wu (k) 

and the terms remaining in Eq. (2.8) in this case 
yield 

H=Uo+ (2.11) 

~ ~ {W00 (k) + Wn (k) +[(Woo (k)- Wn (k))! 
h., a 

.,, A+ 
+ 4 Wo1 (k) W1o (k)] } bkoabkoa 

1 
+2 ~{W00 (k) + W11 (k) 

k,o 

-[(Woo (k)- W 11 (k))2 

I 4 w (k w '1> A+ A 
I 01 ) 10 (k)J } bk1obtno. 

Thus the energetic spectrum of the system under 
investigation will be 

E=Uo+ (2.12) 

~ ~.{Woo (k) + Wu (k) + [(W00 (k)- W11 (k))2 

k,o 

1 + 2 ~ {Woo(k) + W11 (k) 
k,o 

-[(Woo (k)- W11 (k))2 

+ 4 Wol (k) Wlo (k)]'1•} ltkta• 

ltkl"• ltkoo = 0,1; ~ (nkoo + ltkta) = N, 
k,o 

and the generating function is 

S= 
_i_] arc cos Woo (k)- Wu (k) 
2 k [(W00 (k)- Wu (k)) 2 + 4Wot (k) Wto (k)]'1• 

3. CRITIQUE OF THE RESULTS 

The quantities W,u,(k) by which the energy 

spectrum (2.12) is given, can be given a graphic 
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physical interpretation. With this _purpose we must 
first transfor~ W .\.\ -(k). ln the Fqs. (2.2Hor W M'(k), it is 

appropriate to go from the orthonormal atomic func

tions (J f.\ (q) to the ordinary atomic functions 

Wol (k) = ~ <p0 (q) 'P1 (q) [ V (q)- U (q)] dq 

+ ] Aol (f) e-i(fh); 

t+o 
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Cf! f.\ (q). The general method of such a transforma
tion was developed by Bogoliubov 1 , and can be 
reproduced without difficulty in our case. There
fore we give below the explicit equations for the 
quantities under consideration up to first order of 
smallness inclusively, not basing any conclusion 

on them: 

wlO (k) = ~ 'Pl (q) (jlo (q) [ v (q)- u (q)] dq 

W 00 (k) =Eo. (3.1) 
+ L} A1o (f) e-i(fh), 

J+o 

+ ~ <p~ (q) [ V (q)- U (q)] dq + ~ A00(f) e-i(fhl; 

/.PO 

W11 (k) = E 0 + !1£ 

+ ~ cpi(q) [ V (q)- U (q)] dq + ~ A11 (f) e-i(fhl; 

where E 0 is the energy of the s-electron in the 
isolated atom, M is the perturbation energy of the 

electron in the isolated atom; 

/+0 

Aoo (f) = f ~{[ V (q)- U (q- f)-~ <p~ (ql- f) (V (ql)- U (ql- f)dql j 

+ [ V (q)- U (q)- ~ <p~ (ql) (V (ql)- U (ql)) dq1]} 'Po (q) 'Po (q- f) dq; 

A11 (/) =; ~{[11£+ V(q)- U(q- f)-~cpi(ql-j)(t1E+ V(q1) 

- U (ql- f)) dq1] + [ !1£ + V (q)- U (q)- ~ cp~ (q1) (!1E + V (ql) 

- u (ql)) dql]} 'Pl (q) <pl (q- f) dq; 

Aol (/) = ~ [/1£ + V (q)- U (q- f)] cp0 (q) 'P1 (q- f) dq--} {~'P~ (q) [ V (q) 

- U (q)] dq + ~ <p~ (q- f) [!1£ + V (q)- U (q- f)] dq} ~:Po (q) 'fl1 (q -f) dq; 

A10 (f)=~ [ V (q)- U (q- f)] :p1 (q) 'flo (q- f) dq- i- {~ <p~ (q -f) [ V (q) 

- U (q- f)] dq + ~ cp~ (q) [!1£ + V (q)- U (q)] dq} ~ <p1 (q) <p0 (q- f) dq. 

W01(k) = B 

(3.2) 

Furthermore, if we limit our consideration, for 
example, to the case of a simple cubic lattice, 
then in place of Eq. (3.1) we will have: 

Woo (k) =Eo+ Co (3.3) 

+ 2Aol (cos ae +cos ae +cos ae); 

Wlo(k) =B 
+ 2A00 (cos akx +cos ae +cos ae); 

+ 2A10 (cos ak"" +cos ae +cos akz). 
W11 (k) = E0 + !1E + C1 

+ 2A11 (~os ak"" +cos ae +cos akz); Here a is the cubic lattice constant; 
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Co =~erg (q) [ V (q)- U (q)J dq; (3.4) 

cl =~<pi (q) r v (q)- u (q)] dq; 

B = ~ <p0 (q) <pdq)[V (q)- U (q)J dq. 

Thus, as might be expected, the s level E 0 

of the isolated atom in the crystalline lattice is 
displaced by a quantity C 0 and split into a band, 
the width of which is determined by the value of the 
transfer intewal A00 • Analogously, the pertlllrbed 
p-level ( E 0 +~E) of the isolated atom is shifted 

in the crystalline lattice by the value C 1 and 
splits into a band whose width .is determined by the 
transfer integral A 11 • W 00 (k) and W 1J (k) are 
respectively the energies of the s- an p-eleetrons 
in the crystalline lattice. 

It is evident that the energy spectrum of the sys
tem will be determined only by the energies W 00(k) 
and W 11 (k) if we neglect the integrals L e ([0;[1) 

and L (fl; frY) in Eq. (1.2). Actually, 

E = Uo + ~(Woo (k) nhoa + Wn (k) nkia),(3 .5) 
h,a 

nhoa, nk1a = 0,1; ~ (nkoa +nina) = N, 
k,a 

i.e., the energy spectrum of the system in this case is 
COmposed additively of W00 (k) and W11 (k)taken with CO!Te
sponding coefficients (occupation numbers). If the 
integrals L e ([0; [1) and L e ([1; ['0) are consi

dered as small quantities, then we can expand the 
square root in Eq. (2.12) in a series and restrict 
ourselves to the second terms of the expansion. In 
this case we have 

E- U, + ~ {w (k) + U7oi (k) W1o (k) } 
- o -;; oo Woo (k)- Wu (k) n~~oa 

+ ~ { W (k) Woi (k) W1 0 (k) } ( ) 
;; II - Woo (k)- Wn (k) nhla• 3.6 

nkoa. nh1a = 0,1; ~ (nhoa + nhla) == N. 
k,a 

Comparing (3.5) with (3.6), we conclude that in the 
latter case the energies of the s-and p-electrons in 
the crystal are changed by W 01 (k) W 10 (k) / [ W 00 (k) 

- W 1 /k) ]. This correction depends on the integrals 
W (k) and W1 (k). The latter in turn, in agree-ol o 
ment with Eq. (3.3),contain the energy of transfer 
of the electron from the normal to the excited state 

at its lattice point (integral B) and the integral A 01 
and A1 0 for transitions between neighroring atoms 
are of the same type. Consequently, the matrix 

e!ement•s W 01 (k) and W 10 (k} can be treated as the 

energy of the ''excited" and ''hound" electron in 
the lattice. 

In the general case, when the integrals 

L e ( [0; ['l) and L e (f 1; f'O) are not small, the 

energy spectrum of the electrons in the crystalline 
lattice is given by Eq. (2.12). In this case, the 
combination of the s- and p-states is essentially 
established, and we cannot neglect the energies 
W 01 (k) and W 10 (k) in comparison with the ener-

gies W 0 0 (k) and W 11 (k ). Such is evidently the 

case, for example, in bivalent metals (alkali earths)3 

and must be taken into account in the construction 
of a theory of their electrical conductivity. The 
first case of the overlapping of the bands was con
sidered by Blokhintsev. 4 He performed an attempt 
at the approximation treatment of the combination of 
of the s-state with degenerate p-states and ob
tained a series of interesting, but only qualitative 
results. 

Finally, it seems appropriate to emphasize that 
in the ordinary treatment of the approximation of 
strong coupling in the zone theory interaction of the 
states of the s- and p-zones in the zeroth approxi
mation does not in general enter into the theory at 
all. It appears only upon the introduction of addi
tional, in considerable degree artificial, assump
tions. In our case, the necessity for this is lack
ing. The interaction of the zones enters into the 

theory in zeroth. approximatiol' ( through 
the quantities W 10 and W 0 1 ) as a 

consequence of the strict treatment of the zone 
approximation with the help of the apparatus of 
second quantization. 

In conclusion, the authors consider it their 
pleasant duty to express their gratitude to Prof. 
S. V. V onsovskii for a series of critical discus
sions. 
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