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Examination is made of the field correction to electron mass caused by an external 
medium. Second-order perturbation theory is used in the calculations. 

I T was shown in many works1 •2 that the inter­
action between a charged particle and a quan­

tum electromagnetic field produces in the particle 
an additional field mass, due to the radiation field 
(real-photon field), with which this charged parti­
cle is in equilibrium. This change in mass, de­
pending on the temperature of the equilibrium radia­
tion, causes a shift in the levels of the atomic sys­
tems. Un:ler normal conditions this shift is small 
relative to the Bethe shift which, in particular, is 
related to the peculiar process of virtual emission 
and absorption of photons. 

We shall consider in this article field corrections 
to the mass of an electron (or in general of any 
charged particle having a spin l /2), produced by a 
medium characterized by a dielectric constant< (w) 
and a magnetic permeability p. (<). The electromag­
netic self-energy of a Fermion is known to diverge 
logarithmically, but the difference between its 
value in an external medium and in a vacuum is 
convergent3 , as will be shown below. These field 
corrections to the electromagnetic mass of the 
Fermion depend naturally on the parameters that 
characterize the medium. 

A macroscopic description of the medium in terms 
of the parameters < and p. is made possible by so 
renormalizing the self-energy (subtracting the self­
energy of the particle in vacuum) that the higher 
frequencies, i.e., the shorter wavelengths, are cut 
off. A substantial share of the field correction is 
due here only to frequencies below the resonant 
frequencies that cause dispersion. This c<ITesponds 
to wavelengths considerably in excess of the inter­
atomic distances. 

2. The electromagnetic field in a medium obeys 
the known differential equations: 

\72A'- e:IL olA~- (l) 
v c2 at• -0, 'I= 1, 2, 3, 4. 

1 S.V.'fiablikov, J, Exper. Theoret. Phys. USSR 21, 
16 (1951 ). 

2 0. Kothary and F. Auluk, Nature 162, 143 (1948) 

3 V .N. Tsytovich, Dissertation, Moscow State Univer­
sity, 1954. 
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here: 

An is the vector potential and A 0=-iA 4 the scalar 

potential of the field. What matters now from here 
on is that< and p. are frequency dependent as in the 
case of Cerenkov radiation. These quantities must 
therefore be considered as operators, the manip­
ulation of which is defined, for example, by Eq. 
(27 .5) of reference 4. One cannot therefore divide 
the first three equations of (l) by 1/ p. or the last of 
these equations by f. 

The quantization of the free transverse electro­
magnetic field in a medium has already been dis­
cussed5-7 in connection with the quantum theory of 
the Cerenkov effect. 

Let us consider the general quantization of the 
electromagnetic field in a medium with the aid of 
a Lagrangian that leads directly to (l) (see refer­
ence 8): 

L = 8_!_ z£2 - 8_!_ H2- __!._ (ctiv A + e:iJ. aAo)2 (2) 
n: n:[L 8n: c at · 

A~sume the field to be contained in a large cube 
of s1de L, and expand the potentials in corre­
sponding Fourier series, using standard methods; 
this results in an expression for the quantized 
potentials: 

A L-•f," J;/ 2n:c~1L (3) 
v = - .LJ -q- [a.(q) 

q 

X exp{-ic'qt +iqr] 

+ a0(q) exp {ic' qt -i q· r }], 

4 D. Ivanenko and A. Sokolov. Classical Field Theory, 
Moscow-Leningrad, GITTL, 1951. 

5 A.A.Sokolov, Dokl. Akad. Nauk SSSR, 28, 4.15(1940). 
6 V. L. Ginzburg, J. Ex per. Theoret. Phys. USSR 1 O, 

589 (1940). 

7 T. Taniuti, Progr. Theor. Phys. 6, 207 (1951). 
8 

V. Fock and B. Podol'skii, Z. Phys. Sowjetunion 1, 
801 (1932). 
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where q=lql, n = 1, 2, 3, 
, I I c4 = c s, c' = c /Vcp., 

and the amplitudes av satisfy the commutation 
rules 

[a-. (q), a;, (q')] =a, (q) a;, (q') 

-a;, (q') a-. (q) = f3vv,f3qq'. 

(4) 

From this, it is also possible to find the commuta­
tion rules for the global fields: 

[A,(r, t), A,(r',t')] {5) 

4-;:c' 1i 1 \' · ' (t ') = _i_v_ 8n:" J exp {iq.(r- r')} dsq sin c qq-=!--. 
Comparing {5) with the commutation relations in 

vacuum we see that, owing to the frequency depend­
ence of the velocity c 1 on the frequency, the 
!unction in the right half of Eq. {5) is spread out 
over the light cone. If f=j.l=1 , the functions (5) become 
the ordinary commutation relations in vacuum 
{!\-functions). 

The quantized wave functions of the free Dirac 
field are of the known form: 

'fv(r, t) = ~Cn'~n (r, t) (6) 
11 

= L -'/, '\.1 c b e-ic!(t+ikr 
_.... ~ !l !IV' ' 

/l 

where 

are known matrices characterizing the spin states 
and 

(7) 

Furthermore, the operators tf; and Av of the inter­

acting fields must satisfy the following equations: 

( .'/i a ')- ----:---- H ·'J=-erx A •li 
1 at 1 • v v . , 

(8) 

{9) 

where 

'I= 1, 2, 3, 4; Jln = An/fL, fl = 1, 2, 3, 

A 4 = sA 4 ; c_ = - e 

is the electron charge and H=(cft ji);:& +f3mc 2 is the 
Hamiltonian of the Dirac equation. Equations (8) 
and (9) are general equations for the semi-phenom­
enological quantum electrodynamics in media (in 

the Heisenberg rep:esentation). 
The operators l{i and Au can be e·xpressed in terms 

of the free-field operators tf; and Av using the known 
operatorS; 

:jj = S'•l!S-1 A = SA S'-1 
1 "- 1 ' V V"- , 

(1 0) 

where s = eV = j + 'L' + V1V+V"V'V+ ... , s-1 

= e~v= 1-·v+·v·I•'+vv'v"- ... , 
t f' 

vv' = ~ u (t'.) dt' ~ u (t") dt" · 
-oo -oo 

etc., and 
t 

V = ~ U (t') dt' = ~e ~ Cn'nVn'n, {11) 
nn' 

= ~ ~ Cnn'lln•u, 
n'n 

f 
(• (12) 

Vn'n = ~ Un'n dt, 
-oo 

(' ( 13) 
lln'n = j d3x'f~' (r, t) rxvAv (r, t) '?n (r, t), 

whereby, since the theory is symmetrical with re­
spect to the sign of the charge, we have 

C -- 1/ rc+ c c r+) n'n- 2 \ n' !Z- fl'-...Jfl' • (14) 

The validity of (1 0) is confirmed most simply by 
direct substitution into Eqs. (8) and (9), using the 
commutation relations (4), (5), and (7). 

The fields ~and AJJ can be expanded in terms to 
the interaction constants as follows: 

~ == <!,! + [v·~] -+- [v' [·v•?Jl +... (15) 

If second-order perturbation theory is used, the 
energy process of interest to us, that of emission 
and absorption of a virtual photon in the presence 
of a medium, is given by the third term of the right 
half of Eq. (15). To obtain the amplitude of the 
transition it is necessary to substitute Eqs. (11 )­
(13) and (3) into Eq. (15), and use the commutation 
relations corresponding to the absence of photons 
in the initial and final instant of time: 

a;;, (q') a, (q) = 0, a., (q) a:;, (q') === f3w,0qq', (16) 

and to the presence of one electron in state n=O at 
the initial instant of time: 
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Ct+Cn+ = 0n+o, Cn+C~+ === 1- Dn+O' (1 7) 

CtCII_ = 1, Cn_Ci;_ = 0, 

where n +denotes states with positive energy and 
n _ those with negative energy. From this it is 
possible to find the average value of the perturba­
tion energy, which in the approximation employed 
will have the following form: 

(18) 

3. We shall restrict ourselves from now on to a 
discussion of transparent dielectrics, for l'hich 
tt=1, n=["i. In this case, substituting expressions 

(12), (13) and (3) into (18) and using (16) we 
obtain: 

e~ (' d'q / '+ [ q Hk-q J-1 ' 
V = -4 "\ -. '<Yorx" Ko- H~<-q-- -1 1--c;--. 1 anYo) 

r: o! ijll 11 ., 1<-q 

(19) 

e- u· q ( , + }"' H q .l<-q · 1 " ~ "' [ H J-l -- - I) \- ----- ·~ 4r:' q w' ' 'o o k-q n I h k-q I , o) . 

Here 1/J 0 and K0 refer to the initial state of the 
electron, Hk- =;(k-q)+f3k 0 • Further, squaring the 
denominator, ~veraging the entire expression over 
all angles of vector q, and assuming the momentum 
of the electron k-=0, we obtain: 

V = 1 ·'.1+ U·'.l ) -= \'IJ+o U·'.J d:;x ' ; 0 I 0 • I I() l 

where 

Ll= e2 (d"q q(3+n-2)+'2K'n-1 
<lrt2 ko ~ qn"l\'q (q + qn z ·+- 2/('n-1)' (20) 

and K 1 =. ,jq2+k~. Assuming n=1 in Eq. (20) we 
obtain a well-known result, namely the logarithmi­
cally divergent field energy 

en 

Uo = : ( ~ ~ ~~ - +) me~. (21) 

I) 

(see, for example, reference 9, page 399) where 
"'"'e 2/ he. The energy (21) must be subtracted from 
the energy (20) if we want to compute the effect 
of the dielectric on the field mass. 

To obtain the der.endence of the index of re­
fraction on the fielCI mass, we employ the following 
equation 

4nNe~ " f 1, 
n 2 = 1 + -- "' Re -------

lllt ~ (•)~ -- w2 -- iy<,l ' 
h k 

(22) 

where N is the density of the medium, e 1 and m 1 

the charge in the mass of the particles forming the 
medium, w.K the resonant oscillation frequencies, 
andy the damping coefficient.* Then for n-1«1 
the additional energy U 1 =V-U 0 will be 

* We introduced the damping term in (22) to establish 
the correct integration path around the singular points; in 
the final results we put y=O (transparent dielectric). 

9 A. Sokolov and D. Ivanenko, Quantum Field Theory, 
Moscow-Leningrad, l 952. 

where 

U' = ~f,, Uj,, 

" 

xdx 

'2 R 
00~ dx ) + e , , 

V x"- + t? ( 1 - x2 ·- i-f) x l \ o ·l? II 

(23) 

(24) 

and the parameter (; K=me 2 /nwK characterizes the 

ratio of the rest energy me 2 of the particle under 
investigation to the binding energy of the electron 
(or other particles) forming the medium. 

The integrals (24) can be evaluated in closed 
form. In this case we obtain: 

(25) 

I V2T+i - 1 ) ~ 2 
--:--~ In--===--

~~ l_(y2 + 1 - J 
' '"J' 

4. Let us consider the limiting case, when the 
binding energy of the electrons in the medium is 
considerably less than the rest energy of the 
charged Fermion, TiwK « me 2 , i.e., (; » l. Then 
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uk::-::- mc2- --- -- 2-ln- ' rx ( 2r: Nei ) 1 ( ~k ) 

r; m1w~ ~~ 2 
(26) 

rx 2r: Nei h2w~ mc2 
U= !J.mc2 , !J.m =---;- m ~ f~< --2- m2c~ (2- In 2hw ) . (27) 

k mlwk \ n 

Using the fact that ~kfk==l, we can write the last 
For the hydrogen atom, for example, it is pas-

result in the following fom1: sible to obtain from (29) the following level shift, 

tim= - -2a m (s (0)- I) 
r. 

(28) 

X (!:~ y ( 2 - In 2~~/ ) , 

where f (0) is the value of the dielectric constant at 
zero frequency; wrliw/k, and wo is determined 

from the following equation 

(29) 

If the dispersion of the dielectric constant is due to 
the bound electrons of the medium, then fiw 0 /mc 2 

is of the order of oc 2 , since m 1=m and e 1 ==e. In 
this case !1m is lo-ll (d0)-1] times the mass of 
the electron. 

caused by the effect of the dielectric on the mass: 

tiE= Rh,---/!:- (s (0) -I) (hwo \2 
n- 2r: \me" ) 

(30) 

( mc2 ) 
X \_2- In· 2h")t ' 

of the order of (Rh/n 2)oc 5 • If n==2, the change in 
frequency is of the order 

6..'1~0.01 (s(0)-1) (31) 

It must be noted that under normal conditions 
(under normal temperature and pressure) the incre­
mental mass and the change in frequency caused 
by the presence of a medium are small compared 
with the corresponding Bethe quantities, but are 
nevertheless greater than the corrections required 
by the radiation field. 1 

Translated by J.G.Adashko 
17 


