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Investigation is carried out of the problem of the existence of stationary quantum states of a 
system consisting of point nucleons which interact with a field of neutral and charged mesons. 
Various types of interaction operators between the nucleon alid the meson-field are considered. 
With the motion of the nucleons treated non-relativistically, the absence of stationary states is 
proved for the case when the interaction is of a pseudo-vector charactsr. The proof involves 
none of the approximations employed, for example, in the weak or strong coupling method. 

1 • INTRODUCTION 

A variant of the meson theory of nuclear forces 
most popular at the present time is based on 

the assumption that TT - mesons are describable in 
terms ofpseudo-scalars and that their interaction 
with nucleons has a pseudo-vector character. It is 
known that this theory based on the weak coupling 
approximation for the nucleons in the meson field, 
leads to the conclusion that in the g 2 approxima
tion the interaction potential of two nucleons 

separated by a small distance r is proportional to 
l /r3 ; this is why no stationary states are 

obtained in the deuteron problem. Thus, even if 
we ignore the infinite self-energies of the inter
action between the nucleons and the meson field, 
the system has no stationary quantum states. 
Tamm proved 1 that the same difficulty is en
countered when the motion of the nucleons is 
treated relativistically, and also if several other 
approximations of the theory, for example, the 
quasi-static point of view, are not made. 

When the next approximation of the weak coupling 
theory, of the order of g 4 ,- was computed, new 
terms 2 of au order of magnitude that is higher than 
the previous terms of the g 2 approximation appeared 
in the interaction potential for two nucleons. In 
particular, if the distance of separation is small, 

the new terms are proportional to l /r6 , correspond
ing to a repulsion, and predominate over the terms 

of the earlier approximation; the -1 /r3 difficulty is 
therefore eliminated. 

The fact that going to the next approximation 
alters even the qualitative nature of the theoretical 
result is very unfavorable to the weak coupling 
approximation. The question of the existence of 

1 I. E. Tannn, Journ. of Phys. USSR 9, 449 (1945). 
2 K. Nakabayasi and I. Sato, Phys. Rev. 88, 144 

(1952). 

stationary states of the system remains open, for 
it is not at all excluded that high approximations 
may show that at small values of r the interaction 
potential for two nucleons is an alternating series 
of increasing powers in l /r. This means formally 
that the existence of the stationary states depends 
on whether the last term in this series is positive 
or negative. In essence this means that for small 
values of r the potential cannot be represented by 
this series, and it may be that introducing a quasi
static potential is in general meaningless. This 
article therefore treats the question of the exist
ence of stationary quantum states of nucleons in 
a meson field without resorting to the weak 
coupling approximation, and also without intro
ducing quasi-static potentials for the nucleon 
interaction. 

We shall express the Hamiltonian of the meson 
field without sources in the conventional form: 

(l) 

Here all the cp oc and 7T"' terms are real: cp 1 and cp 2 
are the fields of tlte charged mesons, and cp is the 
field of the neutral mesons; 7T are fields th!t are oc 
canonically conjugate to cpoc • The masses of the 
positive, negative, and neutral mesons are assumed 
to be the same, and equal to m , with p. = m,c/1£. 

Introducing a complete set of functions 

X; (r) = vr £23 f cos :r for Xx-:::;:;: 0, (2) 

t sin xr for x.~ > 0, 

which are orthonormalized in the volume L 3 , it is 
possible to expand cp"' and rr oc in Fourier series: 

<fez= ~<p- x-(r), 
_ a:x x (3) 
X 
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X 

Then, assuming 

w~ = c V p.2 + : 2 (~ > 0) 
X X 

and introducing the dimensionless canonically 
conjugate quantities 

(4) 

(5) 

q - = cp - _!_ V w- 1 n, (6) 
cue ax C x 

g~ ='It~(lfcVn~). 
ax ax X 

the Hamiltonian of the meson field can be rewritten 
as: 

ax 

Instead of considering qrxx and grxx as operators 
that obey the known commutation rules, we shall 
take q -+ to be the independent variable, and re
presen~ ~he operators grx x in the following form: 

g - = - i o I oq -. <a) 
ax ax 

As a result we obtain 

flo= ~ ~ nw~ [q2-- (a2 I al- )1. (9) 
_ K «K cnc 

ax 

The non-relati'!istic Hamiltonian of the ith nucleon. 
in the absence of a meson field will have the 
following form: 

i2 
Ki = - Zm !:l;. (l 0) 

The masses of the proton and of the neutron are 
assumed to be the same and equal to m. 

The interaction between the i th nucleon and the 
meson field is chosen to be of the following form: 

fJ; =-Y47t ~ ga'tadA<?a (r;), L;}, (ll) 
a=l 

{A; Cfa, Li} == ~(A a; Cfa) Lal. 
a 

Where g are constants, .,. . are the usual 
0< 0<£ 

"isotopic spin" operators, r. are the nucleon 
_.. I • 

(12) 

coordinates, and A j3 i is an operator actmg o~ 
cp .. (r i). It is assumed that o~erator~ B j3 i co.njug~te 
to A j3 i exist and satisfy the followmg relationship 

~ f (r1) Aa(x.(r,) d't:t = ~ x (rt) Bad (rt) d't:, (13) 

£or arbitrary quadratically-integrable f and X: The 

operator L j3 i acts only on the spatial ~d spin 
coordinates of the nucleon, but not on 1ts charge 
degree of freedom. Thus t 13 . commutes with .,. .. 

' 0<£ 

We assume that operators B !3 and L ~ are homo
geneous, that is, they satisfy the following rela
tionships 

Ba (kr) = knBa (r), 

La (kr) = km L~ (r), 

(14) 

(15) 

where k, n, and m are constants. The generally 
known forms of interaction, namely scalar, pseudo
scalar, and pseudo-vector, are particular cases of 
(11) and possess propoerties (14) and (15). In 
case of a mixture of meson fields having different 

"" types of interaction H { , the values of n and m in 
relationships (14) and (15) can be different for 
each type of intera~tion. 

2. INVESTIGATION OF THE EXISTENCE OF 
STATIONARY STATES IN THE NON

RELATIVISI'IC TREATMENT 
OF NUCLEON MOTION 

The energy operator of the system has the 
following form: 

H(r, q)==H( .. . r 1 •.• , ... q - ... ) 
IIX 

= H0 (q) + K (r) + H' (q, r), 

A A 

K = ~ ki (ri); H' = ] H; (q, r1). 
(16) 

i=I i=I 

If the system has a stationary state,the lowest 
eigenvalue of operatqr (16) (the ground e.nergy 
level) should have a finite value. Accordmg to the 
general assumptions of the quantum mechanics, the 
average energy value of any arbitrary state of the 

system 'I' ( ... ri"'qoc-;_ ••. )is not less than the 
lowest energy level W 0 : 

I 

H == ~'I"* ftlJ! dr dq ">- W0 , 

A 

(17) 

dr= n dxidy;dz;, dq= fldq -. 
. "" l=l ... 

~~~ 

W is the absolute minimum of the integral in the 
le~t half of (17), provided that 'I' ( ... ri ... qocx"') 
is chosen from among the admissible functions, 
i.e., normalized, continuous, with continuous first 
derivatives, finite, and single-valued. Were the 
system to contain only a single nucleon, 'I' would 
be a four-component function, for two values as-
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sume the spin index and two values assume the 
nuclear-charge index. If the system contains A 
nucleons, 'I' has 4A components. Treating 'II as a 
multi-dimensional vec~r, we ca.n regard eX}I'essions 
such as 'II* 'II and 'II* H'P as bemg scalar products 
(sum of the products of the components that have 
equal indices). 

Let us assume the following wave function for 
the system 

'Y(r, q) == 1\J (r1 ... r A) (18) 

x exp {- + ~ [<q"; -q~;)2 ++In~ J}. 
«X ~ 

where ~(r 1 ... rA) is a certain quadratically-
integrable function in the coordinate space x 1 , y 1 , 

z 1 ... x A' y A' z A of the nucleons. 

Let q21 be, in accordance with equations (6) and 
(3), the dimensionless Fourier coefficients of a 
certain constant prescribed meson field 

O(r)= \ 'll"[ljl,r']exp{-!J.Ir-r'l} d't~, (19) 
rp" .) lr-r' I 

where 
A 

'flo: [1\J, r] = ~ 'fli" [1\J, r], (20) 

l=l 

(21) 

Elementary calculation, using Eqs. (9), (l 0), 
(12), (13),, (16), (22), yield 

A (23) 
- f ~ fiB ~ \ 
H = 2 "'-Jhw;- 2m LJ.) lji*A11jldr 

"; i=l 

3 

- 21t ~ ~~ 'fl« [ljl, rl 'fl,. [ljl, r1] 

«=1 

X exp {- !J.I r- r' I } d d 1 • 

I r - r' I 't 't ~ 

Furthermore, let 

1\J(rl . .• rA)=k3Af2f(krv . .. , krA), (24) 

where f(r 1 ... r A) is a certain fixed normalized ad
missible function. It is easy to see that if f is 
normalized, t/J and 'II (r,q) are also normalized for 
any positive constant k. Simple interchange of the 
variables under the integral sign results in 

A A 

~ ~ljl*A11!Jdr=k2 ~ ~f"Addr, (25) 
l=l i=l 

'fj,. (~, r] = 'ka-n-m"-rj,. [j,kr]. (26) 

The last equation results from Eqs. (14) and (15). 
In (25) and (26) f is a function of r. rather than of 
bN ' 

' Let us expand the last term of Eq. (23) in 
positive and negative powers of k; this is done 
most simply by expanding the exponential function 
under the integral sign in a series and taking the 
quantities kr and kr' as new integration variables. 
As a result, the expansion term having the highest 
power of k will be 

- ki-2n-2m21t ~ \\ 'll" [/, r] 'll" [/, r'] d 1 (27) 
Ll JJ lr - r' I 't d't · 
" 

Here the function under the integral sign no longer 
contains k. It is easy to see that the term (27) is 
always negative. At sufficiently large values of k 
this is the governing term of the expansion. 

The next to the last term of (23) is always 
positive and is proportional to k 2 , as can be seen 
from (25). Therefore if 

I +2n+2m<O, 
and k increases in ~3), the (27) becomes the 
dominant term, and H- - oo. As k increases, 

(28) 

'II (r,q) continues to remain an admissible function, 
and inequality (l 7) should be observed. Conse
quently, the system has no ground state with a 
finite energy W 0• 

If the inequali!Y sign is reversed in (28), then 
as k increases, H- + oo, W 0 can be finite, and 
consequently the existence of stationary state is 
not excluded. However, there is no reason in this 
case for insisting on a continuous existence of 
stationary states, for J!: is not known whether the 
absolute minimum of H will be finite after we 
forego the particular form of the wave function 
(18) and turn to its more general expressions. 

The first term in equation (23) is the .zero order 
energy of the meson field and can be disregarded 
in the discussion. 
A) Pseudo-Vector Interaction between Nucleons 

and Meson Field 

In this case the operator fl ~ has the following 
' 
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form 
3 

fl; =-V4'1t ~ gcx't«i(ai> Vlcpcx), (29) 
«=1 

where a. is the nucleon spin operator. Comparing 
this exp~ession with (ll) we see that 

.4 i>l = iJjiJxa~> La1 = aai. ~ = 1, 2, 3. (30) 

Consequently, according to definition (13), we get 

Ba; = - iJjiJxp.;. (31) 

.A )\ 

The operators B f3 i and L f3 i actually have the 
homogeneity properties (14) and (15), whereby 
n =- l and m = 0. Thus,condition (28) is satis
fied, and consequently the system has no stationary 
states. 

B) Scalar Interaction of Nucleons with Meson 
Field 

In this case the operator Hjhas the following 
form 

3 

fJ; = - V 41t ~ g cx't«iCJI« (ri)• (32) 
«=1 

Comparing this expression with (ll) we see that 

(33) 

.... 
Hence B;, = l, n = 0, m = 0, and consequently the 
inequality in (28) is reversed. Thus the existence 
of stationary states of the system is not excluded. 

The two examples considered above show how 
simple it is to apply the general criterion (28) to 
specific variants of meson dynamics. In case of a 
mixture of meson fields with different forms of the 

A 

operator H;,' and unequal p., the results obtained 
above are generalized in a trivial manner: Instead 
of equation (23) we get 

A 

H ~ -} ~ 1iw; - ~: ~ \ 'JI• ~~ ~dr 
- p I =1 J (34) 

r&Xp 

- 21t ~ ~~ 'flcxp ['f, r] 'fl«p ['f, r'] 
«,p 

X exp {- !Lp I r- r' I} 
I 'I d-cd-c'. r-r 

Here the index p runs over th~ differ~nt types of 
meson fields. All the integrals in the last term of 
equation (34) are positive, and it is therefore 
impossible for components with different values of 
p to cancel each other. Consequently if inequality 
(28) is valid for at least one of the meson fields, 
the system has no stationary states; no addition of 
any other meson fields can remedy the situation. 

In connection with this it is appropriate to 
mention the work by Moller and Rosenfeld3 and 
by Schwinger4 *,in which a mixture of pseudo-scalar 
and vector meson fields is considered. When each 
field is taken individually, no stationary states are 
obtained for the deuteron problem; but stationary 
states are obtained when mixtures of these fields 
are taken in a definite ratio. Actually this does 
not contradict the results of our work, for these 
authors obtained a finite energy for the deuteron 
only after using a quasi-static potential for the 
nucleon interaction and discarding known infinite 
self-energies of the nucleons in the meson field. 
By neglecting these terms, these authors obtained 
system ev.ergies that are totally unsuitable as 
eigenvalues of operator (16). 

3 C. Moller and L. Rosenfeld, Kgl. Danske Vii. Sels. 
Math. fys. Medd. 1 7, 8 (1 940). 

4 J. Schwinger, Phys. Rev, 67, 339 (1945) 
* Translator's note.- This reference is actually to a 
paper by Ning Hu, not by Schwinger. 

Translated by J. G. Adashko 
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