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The Hall coefficient is calculated for ionic semiconductors. The interaction of the electron 
with the polarizing vibrations of the crystal is considered both in the adiabatic approximation 
and the weak coupling case. 

I. INTRODUCTION 

THE calculation of the Hall coefficient R is usually 
carried outbymeansofthe solution of the 

kinetic equation. Powever, as is pointed out in 
references l and 2, the quantization of the energy 
spectrum of the current carriers in crossed elec
tric and magnetic fields E..LH remains unstudied. 

The problem of the present research was the cal
culation of the Hall coefficient for an ionic semi
comductor by the method of stationary states 2, 

which allows a consideration of the quantization 
of the energy spectrum by the fields El. H( Ell OX, 
H II OZ). 

The following expression is obtained in Ap
pendix II for the Hall coefficient R: 

R = _ 1· E U2 + ·2)-1 u-l Y x y }x 11 , (l) 

where j , j are the currents, in an unbounded 
y " 

gyrotropic layer, along the axes OY and OX. As 
noted in Appendix II, I j I > I j I usually, since 

y " 
the current j" is proportional to a small parameter 
which characterizes the weak coupling of the cur
rent carrier with the phonons which scatter it. 
Therefore, 

(2) 

To compute the current j we need a concrete 
y 

model of the semiconductor under consideration. 
For exanJple, for the simplest solid, in which the 
current carrier is an dectron with effective mass 

2 
p.. 

(3) 

where N ±is the number of current carriers [in 

semiconductors N ±is a function of the temperature 

N±=N±(T)]: y=-cEIH=--;;y isthemeany 

component of the velocity [the upper sign in (3) 

1 S. Titeica, Ann. Physik 22, 129 (1935). 
2 M. I. Klinger, J. Exper. Theoret. Phys. USSR 26, 

159 ( 1954). 
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refers to holes, the lower to electronsl 
Therefore, in this model, we obtain from Eqs. 

<2> and (3), for I j ± I > I j ± I : 
y " 

R+;:::::; + 1 IN± ec. (4) 

In the presence of combined conduction, 

R = - J; + r; !!_ 
Uj + iy) 2 + Ui + j_-;> 2 H 

(5) 

where (;'_, ~+ are the mobilities of the electrons 
and the holes. 

The case of small I N _ - N + I, i.e., semi
conductors with a small anJount of impurities, re
<pires a special investigation, because, as fol
lows from Eq. (5), it turns out that I J~ + j; I 

.<I j+ +J.-1 in this case, even for I,.± I» I,.± 1. 
"· " y " 

2. THE HALL EFFECT IN IONIC 
SEMICONDUCTORS WITH WEAK COUPLING 

We now consider the Pall effect in an ionic 
semiconductor in which the coupling between the 
electron and the optical vibrations is small. 

As is given in reference 2, the operator of they 
component of the velocity is defined by the rela
tion 

(6) 

where P = p +!. fr f. ~+1 ~~is the component of y y y 
the operator of the total momentum of the system; 

~~ e fare the operators of emission and absorp
tion of the optical vibrations; cu 0 = eH/ p. c. Carry
ing outacanonical transfomJation of Eq. (6) 2 • 3 

~f ~ r.f = ~~ - OCj, 

3 S. B. Tiahlikov, J. Exper. Theoret. Phys. USSR 21, 
16 (1951). 
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where 

A = ...!_. /27t'hwc' e• 
1 lilY v ' 

' 1 1 c =---
n~ <=1 ' 

<iJ is the limiting frequency of the optical branch, 
we obtain the following expression for they com
ponent of the velocity of the current carrier: 

(7) 

Averaging ~ over the unperturbed state of the 
r 

system, we get the following expression for 

vr(a.,=a.t>: 
- i 2 
Vy = - {Py + p.W0Xo- ~njy ott}, (8) 

(J. 

p 
or, after making the substitution 2 x 0 = - ___!_ 

eE ~o 

p.ru~ ' 

Vy = -"[ +Jy, (9) 

where 

J =- 21ttiwc' e2 ""nf jf2 
Y V1t .LJ Y 

( 1iw + 1;; + nrfy- : Pz fz )2• 

We calculate I for the special cases (I) 1z ru 
r 

> p.y2 /2 and (2) trr.J <% p.y2• 

l) irru >% p.y 2• 

We change Eq. (9) from a summation to an inte
gration and limit ourselves, in the expansion of 
I in powers of y and P , to terms of order y y . z 

and P: (for P; < 2p. I trru - % p.y2 !);we get 

ly =-(rIp.) (J~ + J; P~). no> 
where 

/' E~ 
J 1 ~ 160"1iw7t 

~ _ ( 21tc' e2 1ic.> 1/ 2m jiw-p:y2/2j)'/,~ I is 
-o- \("liw-[Ly2j2)2 J' '/i2 "" 

'the small parameter in the theory of weak coupling 2• 3• 
2) fr<iJ <% flY~ 
In this case, in the transition in I from a sum

mation to an integration, we must obfain the in
tegral in the form of a principal value; this amounts 
to a neglect of the finiteness of the lifetime of the 
stationary state considered in the given approxima
tion 2 • 3• For the calculation we express I in the 
folio winp; form : Y 

J __ 1iwc'e2 r ("liFY- lLY) (dF) 
Y - (2 )2 I 2 , 

7t [.L··(-• 2[1- ,,"(2[1-2 pz 2 )( "/i2F2\2 
F·- T yF yT '/i.2 + '/i2 + T pz Fz A + ~) 

' ' 

(11) 

where 
2 

[1-"(2 pz 
A= nw- 2 -2iL<O. 

By means of an expansion of the integral in 
powers of y and P , we obtain 

z 

J Y ( ,· 1" p·') ( 12) y = - -; J2 + 2 ; , 

where 

1~ =- i_ s2 ("liw)•;, .f.= -28 ~ ('fiw)'/, 
• 3 P. lLY2 ' • "liw \[Ly2 • 

Substituting the expressions for I from Eqs. r 
( 10) and ( 12) in Eq. (9), we get 

l) 

2) hw < p.j2 I 2; 

V ::::::; _.[I+ 4e: 2 ("liw)''/, + 28E2 (1iw)''•p2]. (14) 
y { 3 fL"(2 [L"Iiw [1-"(2 z 

It follows from Eqs. (13) and (14) that in this 
model :; depends on the state (on P ) · therefore 

r z ' ' 
in the calculation of the macro-current j =-eN<V > 

r r 
( th& symbol < > denotes the statistical average of 

vr over the states), we must compute < P z2 >. As 
is shown in Appendix I, the equilibrium distribution 
function over P ~ for the carriers has the following 

form in the weak coupling case* 

* A misprint appears in the expression for T 1 in our 
earlier paper [reference l, Eq. (4.5)]. 
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(for 

T = 1Lw In 2- [("Jiw In 2 f 
1 2k 2k I 

1La2 ·']'/•\ 
-4 k2·Jo2 I P.: ia ) : 

' I ' ( p; \ (15) f (Pz) = (2"-fLe kT)-" exp --, -I, 
· 2fLekTI 

where fl' is the effective mass of the qnasiparticles 
moving ~ong OZ. We obtain the expression for 
fl, from the e~pression for r; by(iubs)tituting 

no =fexp k~o -1 J-1 for 
n 0 (see Appendix 1). · 

Restricting ourselves to the case T 1 -~ T k,1i(J)/ k 
and assuming that < P 2 > = fl' ± k T, we obtain the - z e 
following expression for 

}y =-eN (vy) = j~ + j~ [}~± 

= + ecNt (E/ H)]: 

l) fuo ~> 1/ 2 fL"j2 : 

}'j ~ + ecN ± 

•t± . - E [4e:2 ( 1Lw )'/, J y =-+- ecN+- -.- ---- H 3 !L± y 2 

(17) 

28 k T ( 1iw \ 'i, [L' ±J. +-s2 -)' _e 1; w fL y 2 • 
± fLe± 

If we substitute j from Eqs. (16) and (17) in 
• y 

(2), we get m the two cases: 

l)hw> 1/2 [Lj2 , IJyi>IJ..-1: 

R+ ~ + _1_[1- e:~ (~ _ _!_ kT f.L~±)]. (18) 
- -- N ±ec 2,. ,24 80 1Lw f.L± ' 

(19) 

_ 28 kT (~ \ 'J, fLe-'+J 1i.w Y± y2 / 1:'-± • 

It follows from these equations that: 
l) N ± R± depends on T and on y = cE/H. 
2) R±is determined by different expressions in 

the two cases fr(J) > flY 2 I 2 and -It (i.J < flY 2 I 2. 
We now return to the consideration of a semi

conductor with combined conduction. If N » N 
- + 

or N + » N_,or 

IJi + }y-j > I Jt +£I and 

lr;>+ +J~-l>IJ/+J~-1, 
then 

R ~ -- I / ec (N_- N+). (20) 

We take the case of a semiconductor without im
purity ( N _ = N +). 

In this case the expression which defines R de
pends on the ratio of the two quantities I j'+ 

y 

+j'-1 and IJ++J·-j, sinceJ·O+ +]· 0 -=0. 
y X X y y 

For I j + + r I > I ,. ,+ + ,. ,_ I ' N+ = N = N. 
X X y y -

R~ ecl\1 e:~ 11 kT) (21) 
- H 2 (cr+ (H)+ cr_ (H))2 z,. \24- 80 1Lw 

X (J/ fL+ - V f.L_) for hto > !LY2 

, m m 2 ' 

where a+ (H) and a_ (H) are the conductivities of 
the hole and electron currents in the magnetic 
field. 

In this case R is defined by the relation of the 
effective mass fl± and the conductivities a+ (H) 

and a_ (H): for large H ( 1i(J)0 > kT ), j; (H) 
changes as exp (- 1i(i.JrJ2 kT) with increase in H, 
and R "" exp ( 1i(i.J0 I 2kT). 

In the other case, I j+ + r I.< I,·,++ ,·'-1 
N =N =N " " r r ' 

- + ' 
R = _1_ 27t' {( 1 kT ) 

ecN e:2 24- 801Lw 
0 

(22) 

Here R (in the approximation used) depends 
weakly on H for71. (i.J > ~ flY 2• 

Thus in the case of a semiconductor without im
purities (N _ = N+) the Hall coefficient R has the 

following form : 
l) for-h (i.Jo > kT, and with increasing magnetic 

field, R varies as "-' exp { -h (i.J0 1 2kT } up to 

the point where the current I i + + r I"" 
" -" 
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exp { -11. (JJO I 2kT } is no longer less than the 

wrrent I (+ + r- I for a certain H = H o· 
2)For n\ H0 ~d n(JJ > ~ p.y2 , R depends weakly 

on H ( p. }, P.± depend weakly on H). 
3) R depends on T fundamentally as N ( T) 

"'e:xp ( ¢ h I kT) (we cail show that all the re
sults obtain;d are valid for I cil h I >11. (JJ 01 2). 

c em 
For semiconductors with composite conooctivity 

and an excess of one type of carrier, R is de
termin~d by Eq. (a>). The same equation follows 
from kinetic theory 4 • However, while it is valid 
in our case for I i+ + i- I > I i+ + r I, in the . y y s s 

kinetic theory it holds for I i! I > I j; I and 

I i: I >I i; I, i.e., for I i! I + I i: I > I i; I 
+I i; I. 

3. HALL EFFECT IN A POLAmZED 
SEMICONDUCTOR 

We make use of the results of reference 5 and the 
calculation of the Hall coefficient by the method 
of stationary states for polarized semiconductors. 
As before, we must find an expression for v . In 

. th sl . al ,.. ( l) y d th1s case we separate e tran at1on vy an 
fl . 1\ ( 2) art • uctuat1 ng v Y p S• 

(23) 

where r = q+ 1, q( q 1 q 2 q 3 ) represents the trans

lational part5 •6 of the coordinates of the electron 

and A its fluctuating part. 
In zeroth approximation 5 the states of the system 

are charactenzed by the wave functions 

'¥0 = exp {(i/n) (Pyq2 + Pzq3)} ( 24) 

x Hn (ql- qiO) iJN (I) ll e, (n,), 
1 

where q~ =- eE/p.(JJ ~. n is the quantum number of 
th " . " '11 N · h e magpetic osc1 ator, 1st e HUantum 
number of the fluctuating motion in tile polarization 
potential hole of the polaron, in accord with the 
ground state of the polaron, P is the tetal momentum 

4 
B. N. Davydov and I. M. Sbmushkevich, Uspekhi 

Fiz. Nauk 24, 21 (1940). 
5 M. I. Klinger, J. Exper. Theoret. Phys. USSR 26 

168 ( 1954) . ' 
6 S. V. Tiablikov, J. Exper. Theoret. Phys. USSR m, 

377 ( 1948). 

of the polaron. Fere li 1 = (JJo q1 (pA + p.ru0 A1 ) 

[reference 5, Eq. (4)] is considered 2as a pertur-

bation, since ( .:J.j 1) '"' ( q 1) '"' VIi/ P. (JJO nn rul sx 

"'t:«l5. 
With the help of Eq. (24), we average :J and 

obtain* Y 

(25) 

where 

(l .. l)NN = s 'Y;,. Al 'Y N (dl..). 

As is seen from references 5 and 7, the quantities 
( A1)N N for the weakly perturbed statesN of the 

discrete spectrum of the polaron whose potential 
well coincides with the ground state '11 0 , areal
most one and the same (in order of magnitude). 

The states of the more perturbed part of the 
spectrum are not generally taken into account in 
the calculation of <( A1) N N >, since the corres
ponding Boltzmann factors are much smaller8 . 
Therefore, we make the approximation 

< (I.I)NN) = (i.J )o0 = 2~oc2Ri~~. (27) 

where R~~ = ft/J 18 (A) A1 t/J 2j, (A) (d AL It was 
shown in reference 5 that a. 2 is coupled with the 
polarization of the polaron r 0 in its ground state: 
a. 2 R i~ = - ( r of2e) E. Consequently, we get 
from Eqs. (25) and (27): 

}y. =-eN ( Vy) = eN_"[ (1- vf0H 2), (28) 

where 

(For the holes, 

Jf' = - e N:.T ( l - v.rr ;i H 2), 

where v + = rtl2e 2, rt = e 2/ p.+c 2 .) 

The calculation in reference 5 of the spectrum 
of the polaron in crossed fields E l.H was carried 

* ln the calculation of ii in the following approxima
Y 

tiona, we must take a more accurate wavefunction. 

7 S. I, Pekar and M. F. Deigen, J. E:xper. Theoret. 
Phys. USSR m, 481 (1948); fu. S. Perlin, J. Exper. 
Theoret. Phys. USSR m, 274 ( 1950)· 

8 S. I. Pekar, Investigation of the electronic theory 
of crystals, GITI, 1951. 
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out only for such E and H which produce slight 
changes in the polaron well[ H <Hk 

2 [ ~ = ( X I f 'F 0 ] ) 2, reference 5, Eq. (17) ]. It is 
easy tS see in such a case that, from Eq. (28) the 
polarization part of the current is 

I t'!! (; I = eN+ yv ± r t H 2 < I j 0 / I = eN± y. In 

accord with Eqs. (~) and (28), for I jy I >U% I, 

1 E 1 
R±=-_;Y±H=- N ec(1-v r:tH2 ) • ( 29) 

± ± 0 

In the case of polaron semiconductors with 
composite conductivity there can be two cases 
which we consider separately. 

1> ut + 1;- 1 > u:t + 171 : 

R=- -1 [N_ -N. ec .-
(30) 

We note that for H < ;±; v ±crt (~±is the 

mobility of the current carrier in the field H.l.E), 
i.e., for I t'!!j; [<I j~ I= eN ±P ±E, Eq. (30) is 

valid if I N _ - N + I > ( H! c) I N'ii: _ + N +'it+ 1. If 

Hk >H~'ii:±!v±cr0±, i.e., lt'!!j;l>lj~l,thenEq. 
(30) is valid even for N _ = N + = N. In that case, 

R :-:::·-I 1 NecH2 ('~ _ r-;- 'I_:JJl (31) 

For N _ = N +the sign of R is determined by the 
ratio of the effect mass of the electron fl_ and of 
the hole fl+' since 

_ + e2 [( tL-)2 ( tL+)2] 'I r -'l.ro = B- - - - , - o .- mc2 m m 

where B is a constant which is different for dif
ferent materials. 

2) For H,;;;;, u+ f '~±crt and 

IN_- N+I<(H I c) I N_u_ +N+u+l' 

Jjt + }y I< 1/J +[;~and R is determined from 

the formula 

or, for N _ = N + = N, 

R = _ c (v_ r-;- v+ rt) 
eN (u+ (H)+ ii__ (H))2 

CONCLUSION 

( 33) 

In the present paper the Hall coefficient has been 
calculated for ionic semiconductors, considered 
both in the weak coupling approximation md in the 
adiabatic approximation. The method of station-
ary states was used, i.e., the calculation was 
carried out without use of the kinetic equation. 
The difference between our equations and those 
following from kinetic theory are most marked for 
N_ = N+' i. e., in particular, in the case of a 
semiconductor without impurity. For example, in 
in this case, for a polaron semioonductor, R is de
termined by the ratio of the polarizabilities of the 
electron and hole polarons. 

APPENDIX I 

We find the equilibrium di atribution in P - f( P ) 
z z 

with the aid of a Gibbs grand ensemble; if the 
energy of the system is given by the expression 
Ec =Ec(Pz' PY, n0 , n1), then 

, E ) 
f(Pz) = ~ exp (--=---, kT 

(I. I) 
Py, nl, n1 

X { . ~ exp (- :;)r1 

Pz. PY' n0, n1 

If we substitute in (I. I) the equation forE c' 
computed in reference 2 with accuracy to £ 2 

[ Eq. (2.5)], we obtain (keeping the notation of 
reference 2): 

(1.2) 

where 

W1 = ... ~ ... exp {- k~ [ EcB' (/) nt 

+ s2P;EC2 (j) n1l}; 

W2 = ~exp {- ;; [hw0 + s2C1P; + s2oc1J} Y·3) 
n. 
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The quantities cx.1, cx.2 ({J; C 1, C 2 (f), C 3 are 
obtained by an expansion of l:o. E in reference 5 
[Eq. (2.5)] in powers of Pz(with accuracy to P!>: 

112E = s2Ex2 (f) n1 + s2P;EC2 (j) fLJ. (1.4~ 

113£ = s2n0rx1 + s2n0C1P~. 
We return to the calculation of W 1 ; inasmuch as 

£ .<< 1, we can decompose W 1 in powers of £: 

- ( w' w") W ""'Zr 1 + p2_I + t 
1 z z z . ' r r 

where 

Zr = ~ {- k~ [ Ec8' (f) n1 ... n, ... 

is the statistical sum of the system of quasi
particles t' '(f). 

since, by definition, 

fi1 = z~ ~ n1 exp {- k~ [ Ec8' (/) n1 
... nf ... 

(1.5) 

(1.6) 

is the equilibrium value of the occupation number 
n1, computed in reference 5. Consequently, 

W1 = Zr exp {- ke; [P; EC2 (f) fit 

+ Ex2 (f) fLJ]-}. 

By analogy, 

W -'1 _ e-tifiJo/kT)-Jex..J _ e2n0 (P2C -L ) }(1. 7) 
2 ' !')_ kT z 1 ' rx1 . 

Here we introduce the e9'!ilibrium number of os-
- ftcuo ]-1 . 

cillator quanta n 0 =[ exp kT - 1 . Then 1t 
follows from Eqs. (1.1 )-(1. 7) that 

(1.8) 

where 

D1 = D ( 1 - e-1ifiJ,JkTt1 exp {- ke; (rx1n0 

+ Erxdf) nt)}; 

( fL' differs from the fle in reference 5 by the fact 

th:t no is replaced by no>· 
Making use of the expressions for 7i/ T), com

puted in reference 5 [ Eqs. (4.5 ), (4.6) ], we cal
culate Zr: 

Zr = exp [- rr
2k1 T2 l for 0 < T < T1, 

121ia~ / Pz- az I 

f (Pz) = D 1 exp [- p; - rr2kT ] (1.9) 
2(L~kT 121ia~ I Pz- az I 

and for T 1 < T -~it cu/ k, 

f(Pz) = (2'1tp.~kT)-'/, exp {- P; / 2p.~kT}. (1.10) 

APPENDIX II 

In the method of stationary states, we initially 
calculate the currents ix• i, in an infinite gyro
tropic medium (taking into account the quantization 
of the spectrum of the system in the crossed 
fields E .l.H), and then these j , j are substituted 
• th . h' h " th" • In e expressiOn w 1c connects e currents ix• 
i, with the Hall coefficient Rand the resistance 
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in a transverse magnetic field, p. In this case, 
we introduce the tensors of electrical conductivity 
uik and electrical resistance pik in a gyrotropic 
medium ( i, k = l, 2) and employ the local ratios 

of the fields E "' E and the currents j "' j , apply
ing them initially~ the case of a crystalybounded 
along OY (jy = 0), in order to establish the con
nection of p and R with pik and uik; then we con
~der the case of an unbounded gyrotropic crystal 
( E Y = 0 ), to connect R and p with the currents 
j" and iy computed with account of the quantization 

of the energy of the system in the field E l H. This 
can he done since the relations 

2 2 

E; = ~ p;h}h and }; = ~ crn,Eh (i, k = 1.2) 
k=l k=1 

are local relations. 
As is shown below, the ordinary expressions 

for p and R ( p = j 1 E / j ~ + j ; ), R = - j 2E / ( j ; 

+ j; )are obtained only if the Onsager relations 
are satisfied: u 12 (H) = + u 21 (-H), p 12 (H) 
=P 21 (-H). There are cases for which the On
sager relations are not satisfied, e.g., if u 12 and 
u 21 (and also p 21 , p 12 ) depend not only on H but 
also on the external field E 1 (the local relation 
between 1·· and E. remains valid as before). In 

' ' such a case, because of the axial symmetry of the 
system in the field H, p 11 = p 22 = p, u 11 = u 22 

= u, hut p12 = p' =1: - P21 and u 12 = u' =f - u21' 
In Sec. 2 of this paper we considered such a case 
t 1r (i) < ~ p.y2). 

We can set p21 =- p' + p , u 21 =- u' +a , 

where p = p 12 + p 2 1' a= u 12 + u 21 • 

Then 

We first return to the conclusion of the expres
sion for R : for j 2 = 0, E 2 = + (- p' + P) j 1 

= RHj 1, i.e., RH =- p' + p. 
It follows from (II. 2) that 

RH , - a'_-;; 
=-p +poo= , 

a2 +(a' - a)2 + a'(j (II. 3) 

hut forE 2 = 0 it follows from (11.2) that 

Therefore, (II. 3) reduces to the form 

R = _ j2E1 u2 +1.2_ -. e +-2£2}-~ H 1 2 °/2 1 cr 1 (11.5) 

This is the general formula for R. 
If a = ( 2 lj 0 (as is the case in the present work 

forit CLi .< ~p.i) with accuracy to f 2 « l we obtain 

inclusively [for I j 2 I> I h I,R±"" R~= ±( N 1!!c)· 1 

with accuracy to € 4 ] : 

(11.6) 

Consequently, for I j 1 I < I j 2 I = I j ~ + f 2j'2 I 

R= -E1/J~H = Ro- (II. 7) 

For I h I > I i 2 I 

R =- (EJ~ I JiH)- 82E1j~ I J~. (11.8) 

We begin consideration of the expression for the 
resistance in a transverse magnetic field H lE 1. 

It follows from Eqs. (11.1) and (11.2) that 

a 
p = -----=-------= 

a2 +(a' --a)2 +a' a 
(11.9) 

= h£1 (I _ ;j2E1- ~2Ei ). - 1 

.2 + ,·2 ,·2 + ,·2 
11 2 . 1 2 

If a.;...., f 2 « l, we obtain (with accuracy to £ 2 

inclusively) : 

for I i 2 I > I i 1 I : 

( ;; E ' 
0 ~ pO I _(__ .,2 ~ ) 
~ ...__., I .._. • ' ]2. 

for I i 1 I > I i 2 I : 

whence 

0 . E IU2 + ·2) p =}I 1 1 h. 

It should he noted that if the On sager relations 
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are satisfied and 11 = u = 0, then, in correspondence 
to the above, 

R . E ( ·2 + ·2)-1 . E U2 .2)-1 =-}yxh }y ,p=)xJ. x+Jy · 

In conclusion, I take this opportunity to express 

my gratitude to Professor A. G. Sanioilovich for 
suggesting the work, for his valued advice and 
constant interest. 

Translated by R. T. Beyer 
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