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. in Fluctua~io~s of phase and amp.litude in weakly non-linear oscillating systems amenable, 
the pe!IOdiC mode, to calcu!ation t~rough an expansion in terms of a small arameter 

are cons~d.ered. In contra:'t w_Ith pre':10us studies 1-5, the Einstein-Fokker e ~at ions are 
not. used, mstead: symbohc differential equations containing random functio~ which de
scnbe th~ fluctuatiOns are used in conjunction with methods of correlation theory 

The fust part of the paper is devoted to a consideration of a system with one de ee of 
freetdom; t~, Il~uhtra~e the met.hod, th~ ~neral theory is applied to the case of an is~lated 
sys.etmd, w IC aubs een :>tudied earher2, and to the physical example of a weakly self
exci e vacuum-t e oscillator. 

l. INTRODUCTION 

T!!E problem of the behavior of dynamic systems 
m the presence of random effects has been 

treated in very general form in reference 1 which 
is un.douhtedly fundamental in this particuiar field. 
In this paper the statistical approach was that of 
~he E_instein-Fokker transition-probability equation; 
I.e., It was assumed that the random process 
taking place in the system is a Markov process. 

The general considerations developed in reference 
l were applied further in the study of the natural 
bandwidth of a vacuum-tube oscillator2 , in which 
connection the oscillator was assumed to he a 
system of the Thomson type; i.e., approximately a 
conservative harmonic oscillator. The theoretical 
results were shown to he in good qualitative 
agreement with experiment3 • 

Because of the considerable improvement in the 
sensitivity of receiving and measuring apparatus, 
fluctuation effects have received a good deal of 
attention in recent years. In particular, fluctuations 
in oscillating systems, aside from their theoretical 
interest, have now acquired direct practical 
importance, for example in determining the limiting 
frequency stability which can he achieved in 
quartz-crystal frequency standards 6. 

In further study of the problems in this field it 
would seem desirable both to attack new problems 
other than those considered in reference 2 and 
reference 3, and to apply other statistical methods. 
In connection with the first of these approaches 

1 L. Pontriagin, A. Andronov and A. Vitt, J. Exper. 
Theoret. Phys. USSR 3, 165 (1933) 

2 I. L. Bershtein, Dokl. Akad. Nauk SSSR 20, 11 
(1938); J. Exper. Theoret. Phys. USSR 11, 305 (1941) 

3 I. L. Bershtein, Dokl. Akad. Nauk, SSSR 68, 469 
(1949); Izv. Akad. Nauk SSSR , Ser. Fiz. 14, 145 (1950) 

4 P. I. Kuznetsov, R. L. Stratonovich and V.I. 
Tikhonov, Dokl. Akad. Nauk SSSR 97, 639 (1954) 

mention should he made of reference 4 in which the 
Einst~in-Fokker equations were used to study the 
behaviOr of a vacuum-tube oscillator in which the 
fluctuations were not assumed to be small and 
correlation time of which was large compared with 
the oscillation period, and of reference 5, in which 
the methods of references 2,3 were used in 
considering fluctuation in an oscillator with 
nonlinear inertial properties. 

The present paper treats fluctuation in oscil
lating systems of the Thomson type having one or 
two degrees of freedom. The statistical approach is 
one first introduced by Langevin 7 in the theory of 
Brownian motion and in general is quite different 
from those used in the work cited above. In 
particular, in place of the Einstein-Fokker equa
tions, we consider symbolic differential equations 
which contain explicitly the random forces acting 
in the system and determine the random functions 
t~emselves rather than the distribution functions. 
Without attempting a comprehensive comparison 
between these two methods, we may note here 
certain features of both. 

Using Einstein-Fokker equations,one may easily 
take into account auxiliary conditions such as the 
existence of reflecting on absorbing boundaries in 
considering the region of variation of the random 
functions; this is done by imposing appropriate 
boundary conditions. In working with symbolic 
differential equations,the consid~ration of such 
conditions is more complicated. On the other hand, 
these e<P,Iations are more general in that they are 
not limited to Markov processes; the random force 

5 M. E. Zhabotinskii, J. Exper. Theoret Phys USSR 
26, 758 (195.4) • • 

6 A. Blaquiere, Ann. de Radioelectricite 8 No. 31 36 
and No. 32, 153 (1953) ' . ' 

7 P. Langevin, Compt.rend. 146, 530 (1908) 
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F(t} need not have 8- colTelation. The situation in 
which F (t} is "absolutely random", i.e., 

F(t)F(t') = Ca(t- t') (l.l} 

and colTespondingly, in which the impulse over the 
time T 

t+-T 

I (t) = ~ F (t) dt (1.2} 
t 

is a non-colTelated function, represents an excep
tional case. As is well known, it is precisely in 
this case that the system fluctuations caused by 
F(t} constitute a Markov process, and the con
sideration of the problem by colTelation-theory 
methods is equivalent to its solution using 
transition probabilities. In general, however, the 
application of symbolic differential equations in 
conjuction with correlation theory seems to be 
simpler and more instructive, so that we shall use 
it here although we shall limit ourselves to random 
forces having 8-correlation. 

First as an illustration of the method, an 
isolated oscillating system is considered, i.e., the 
problem solved in reference 2. 

In the following paper our method is applied in 
somewhat more complicated problems: fluctuations 
in a non-isolated oscillating system with one 
degree of freedom, namely a vacuum-tube oscillator 
synchronized by an external driving force and 
fluctuations in an oscillating" system having two 
degrees of freedom, more specifically, a vacuum
tube oscillator stabilized by coupling to a high-Q 
circuit. 

2. STATEMENT OF TilE PROBLEM 

Since it is assumed that the systems beiitg 
investigated are approximately conservative oscil
lators, it is reasonable to use for the solution of 
the equation of motion a method involving expan
sion in a small parameter. This parameter, which 
we call p., determines slow variations of both 
amplitudes and phases of the oscillations at the 
fundamental frequency and at its harmonics, i.e., 
it enters not only directly, but also through the 
"slow" time 

.,. = p.t. 

In other words, the solution will be in the form 

x = Rcos (t- rp) + p. ~{Pncosn(t-rp) 
11 

+ Qn sin n (t- rp)}, 

R·= R ('r:, p.), 

The first question which must be settled in 
applying this treatment of random effects is the 
choice of the order of magnitude of the random 
force. Two reasonable choices are possible: first 
order, i.e., a force p. F(t}, and second order, i.e., a 
force p.2 F(t}. In the following it will become 
apparent that over and above its greater conven
ience with regard to the numerical values which 
appear in the dimensionless-parameter equations, 
the second choice leads to a more consistent 
perturbation method. Thus,for a system with one 
degree of freedom the equation of motion will have 
the following form: 

~;:+x=p.f(x, d~· t, p.)+tt2F(t). (2.1} 

The explicit dependence off on t ( which. arises 
in the synchronization problem} is assumed to be 
periodic with period 277. In the case of the 
isolated system the time enters explicitly only 
through the random force p. 2F(t}. 

As is well known, the equations for the ampli
tudes and the phase Cf1 are obtained from the 
requirement that in x there be no terms ( in any 
order in p.} which increase indefinitely with t. 
This means that, in looking for a solution in the 
form of a series in p. (x = x 0 + p.x 1 + p.2x 2 + ...... }, 
the right-hand member of the successive approxi
mation equations must not contain resonance 
harmonics. According to Eq. (2.1}, the random 
force enters in the right-hand member of the 
equation for x 2Lx2 + x 2 = F (t) + .... ], i.e., speak
ing formally, it should act as a conservative 
oscillator- a system with an infinitely large 
driving force. From this it is clear that in 
the spectrum of F(t} only the immediate region of 
the fundamental frequency is of importance and 
thus F(t} can be written in the form 

F(t)=F 11 (-r)cos(t-rp) (2.2} 

- F .1. (-r) sin (t- rp), 

where F" and Ji are the components of the force 
tangent to and normal to the generating circle 



FLUCTUATIONS IN OSCILLATING SYSTEMS. I 219 

(more accurately, to the circle corresponding to 
the fundamental frequency). 

In order to examine the significance of this 
representation of the force, we write its spectral 
function 

ex> 

F (t) = ~ {U (w) cos wt + V (w) sin wt} dw. (2.3) 
0 

Using the Fourier-transform formulas and the 
correlation function ( l.l), it follows that 

u (w) u (w') = ~ {a (w- w') +a (w + w')}, 

V (w) V (w') = C {o (w- w') 
7t 

-a (w + w')}, u (w) v (w') = 0. 

In the integration over cu and cu 'from zero to 
infinity, terms with o ( cu + cu ') always vanish, so 
that only the first term need be considered: 

U (w) U (w') C V (w) V (w') (2.4) 

= "i a (w- w'), u (w) v (Cll') = 0. 

Comparing Eqs. (2.2) amd (2.3), it follows that 
ex> 

F/1 (-c) = ~ {U (w) cos (ac-e+ cp) 
0 

+ V (Cll) sin (ac-e+ cp)} dw, 

·m 

F.1. (-c)=~ {U(w) sin (oc-c + cp) 
0 

- V (w) cos (oc-c + <p)} dw, 

where 
ot·= (w-1)/p.. (2.5) 

These expressions are completely rigorous 
although, strictly speaking, on the left-hand side 
one cannot write the "slow" time -r as the argu
ment for Fj1 and F.1 • In view of the smallness of 
fL , however, and in view of the fact that we are 
interested not in Fn and Fl. themselves, but only 
in their correlation functions, this expression is 
justified. Thus, for the correlation function of Fj1 , 
we have 

Fu (o:) Fu (-c') • 
ex> ex> 

= ~ ~ '""{ u-=-=-c-os-(-:-oc--c -+-<?__,.)-+-----o-V-;-s--:-i-n 7( oc--c-+:--cp ):-:-}--;{-;-l/;-;-' c-o-s 7( oc--;-' -c--;-' --:-+-cp--;-' ~) +--:---;V-;;'-:si-:n-:--( ot' -c' + cp')} X 

0 0 

X dwdw'. 

In view of Eqs. (2.4) and (2.5), this gives 
ex> 

f'n(-c)F 11 (-c') =~~cos [oc(-c--c') +cp-cp') dw 
0 

ex> 

= {L; cos (cp- cp') ~ cos()( (-c - 't1 ) dot 
-1/1'-

ex> 

fLC • ( ') \ - n sm. cp- cp j sinot ('t- 't1) dot. 
-1/1'-

lt is clear that for fL --. 0 the integral over 
cos oc ( -r- -r') becomes 2rro(-r- -r') and the 
integral over sin or.(-r- -r') becomes zero. Thus, 
within the accuracy of the rapidly oscillating 
terms, one may use these limiting values of both 
integrals, and it is in just this sense that 
we interpret the statement that F11 and F .1. depend 
on the time only through -r = p.t. 

In the factor which multiplies the o- function one 
may assume that -r'= -r so that Fu ( -r) Ffl ( -r ') 

=2p.C o ( -r- -r' ) . Incorporating this with the results 
of similar calculations for the other correlation 
functions we have finally, 

F 11 ('t) Fu('t') = f'J..('t) F J..('t') (2.6) 

= 2p.Ca ('t- 't'), 

f'u (-c) FJ..('t') = o. 
We now turn our attention to the solution of 

Eq. (2.1). 

3. SUCCESSIVE APPROXIMATION EQUATIONS 

In differentiating any function which not only 
depends on t explicitly but also through -r = pt, we 
have 

d iJ iJ 
dt =lit+ p. iJ-r = (·) + p.( )'. (3.1) 
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For brevity we indicate the respective partial 
derivatives here and in the following through the 
dot and the prime-symbol. 

In order to simplify the calculations, we make 
the assumption that the system being studied has 
cubic non-linearity only. This allows us to 
neglect the even harmonics, i.e., to look for a 
solution in the form 

x = R cos (t- cp) + p. {Pcos 3 (t- cp) (3.2) 

+Qsin3(t-cp) + ... }. 

Cal l · dx d d2x . d . cu atmg_ an - m accor ance w1th Eq. 
dt dt2 

(3.1), after substitution in Eq. (2.1), we get 

[- 2p.R' + p.2 (Rep"+ 2R'cp')1 sin (t- cp) + [2p.Rcp' (3.3) 

+ p.2 (R"- Rep'•)] cos (t- cp) + [- Sp.Q + p.2 (18Qcp'- 6P')] sin 3 (t- cp) 

+ [- Sp.P + p.2 (18Pcp' + 6Q')] cos 3 (t- cp) + ... = 

f dx 
=p. (x, dt, t, p.)+p.2 [Fu('t)cos(t-cp)-F_.L('t)sin(t___;cp)]. 

Now we expand fin a Fourier series with respect 
to t - cp(keeping in mind the fact that the 
explicit dependence off on t is assumed to be 
periodic with period 277): 

f (x, ~;, t, p.) 

= ~ {<I>k sink (t- p) + 'Ykcos k (t- cp)}, 
B 

where (k > 0) 

1t 

~:} = ~ ~ f {Rcos u + p. (Pcos3u (3.4) 
-1t 

+ Q sin 3u) + ... , - R sin u + p. (Rep' sin u 

+ R' cos u- 3Psin 3u + ... ), 

} sin ku 
u + cp, P. cos ku du. 

Now equating the coefficients of sin(t - cp), 
sin 3(t - cp) and cos (t - cp), cos 3 (t - cp) to zero, 
we find 

2R' + <I>1- p. (Rep"+ 2R'cp' + F~) = o, 
2Rcp'- 'Yl + p. (R"- Rcp'2 - F 11 ) = o, 

SQ + <1>3 - p. (18Qcp'- 6P') = 0, 
SP + '¥3 + p. (18Pcp' + 6Q') = 0, 
. . . . . . . . . . . . . . . . . . 

The successive approximation equations are 
obtained from the substitution of a power series in 
p.: 

R=Ro+11R1+···· (3.5) 

p =Po+ p.Pl + ... , 

in which ll>k and lJ1 k are also resolved in terms of 
,.,. 

ll>k = <I>ko + p. <l>k1 + ... , 
'Yk= 'Yko+ p.'Ykt + .. . 

In accordance with Eqs. (3.4) and (3.5) 
1t 

;:~}=~ ~f(R0 cosu, 
-1t 

-Rosin u, u + Cfio, 0) sin ku du 
cosku • 

oll\0 o<I>ko 
<l>1n = R1 iJRo + 'P1 D'Po· + A,t~ 

(3.6) 

where 

o'F,o o'F,o 
'Ykl = Rl iJRu + 'Pl Otpo + Bh., 

(3.7) 

+ (f~P0 + 3f~Q0) cos 3u + (j~Qo 
· . · stn ku 

- 3 f ;;oPo) sm 3u + f pi}} cos ku du. 
Equating th~ coefficients ot terms of the same 

order in p. to zero, we find the equation for the 
first approximation 
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8Qo + <1>3o = 0, 

8P0 + '1"30 = 0, 

and the equation for the second approximation 

2R. + o<D1o R + o<D1o 
1 oRo 1 O<po tfJ 

(3.8) 

(3.9) 

- 00:~0 tf1 = Ro'f~2 - R; + B1 + Fu; 

8Q1+ 6P~ -18Q0tp~ + <1>31 = 0, 

8P1- 6Q~- 18P0tp~ + '1"31 = 0. 
(3.10) 

The first two equations of (3.8) are the 
so-called reduced equations. We note that for the 
regular method of successive approximations 
being used here the basis of this designation is 
lo§t. We do not require the "rejectfon of quickly 
oscillating terms" nor averaging over phase, i.e., 
th!l usual procedures which are employed in the 
deriv.ation of the first two equations of (3.8). 

Equations (3.9), which are linear in R 1 and cp 1 
permit us to express R 1 and cp in terms of the 
fluctuation forces F;1 and Ji wfi.ose correlation 
functions are known, i.e., they permit us to find the 
correlation functions for the amplitude fluctuations 
and for the phase fluctuations, and eventually to 
determine their mean-square values. Thus,the 
problem of finding the statistical properties of ·the 
random process which takes place in the system 
being investigated is completely solved. 

If in Eq. (2.1) the fluctuation force had been 
introduced in first order in p., then in place of 
Eq. (3.8) we would have obtained the following 
equation for the first-order approximation: 

Bershtein2 started from these equations but in 
forming the corresponding Einstein-Fokker equa
tions he was still forced to resort to perturbation 
methods, i.e., to the linearization of Eqs. (3.U). 
Taking R0 and Cfb to he the solutions of Eqs. (3.ll) 
for Fl. = F 11 = 0, and taking R and cp to he the 
small deviations caused by tfe fluct~ation forces; 
resolving Eqs. (3.11) in powers of R 1 and cp1 and 
limiting ourselves to linear terms, we have 

2R. + a<Dto R + a<Dto = F 
1 iJRo 1 O<po 91 .1.• (3.12) 

2R . (2 . a'P'1o) R o'Y1o F 
o91 + 9o- iJRo 1 - Otpo 91 = II· 

The linearization of Eqs.(3.1l) indicates that the 
fluctuation force is influenced by the behavior of 
higher order terms as is shown by. a comparison of 
(3.9) and (3.12). In using the successive-approxi
mation method this effect is introduced naturally as 
was done above. Furthermore, we see that the 
linearization of Eqs. {3.11) yields a result which 
coincides with that of Eq. (3.9) only in those cases 
for which all additional terms in Eq. (3.9) are 
either absent or can be set to zero. If one or the 
other of these conditions is not fulfilled (and this 
is entirely possible) then Eq. (3.12) does not take 
into account regular corrections to the al!lplitude 
and phase. It is to be understood that the presence 
of regular additional terms in the right-hand member 
of Eq. (3.9) is not essential to the fluctuations. 

We now consider the case of fluctuations in an 
isolated oscillating system. 

4, ISOLATED OSCILLATING SYSTEM 

Since the time t does not appear in f explicitly 
in this case, the qu@.ntities <Pko, '1\ 0 , A k and B k 
do not depend on % as is seen from Eqs. (3.6) and 
(3.7). Hence in an isolated system, Eqs. (3.8) and 
(3.9) assume the form 

2R~ + <1>10 (R0) = 0, 8Q0 + <1>30 (R0) = 0, (4.1) 

2Ro9~ -'flo (Ro)=O, 8P0 + 'f3o(Ro) = 0; 

2R~ + 0ai: R1 = Ro9~ + 2R~ 9~ 
- A 1 (R0) + F .1.• 

(4.2) 

We are interested only in steady-state oscilla
tions, so that R '= 0. The first equation of (4.1)~ 

<I> to (Ro) = 0 

determines only the constant (independent of r) 
values of the radii of the generating circles in the 
zeroth approximation. 
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If 'P 10(R 0) =F 0, then, from the second equation 
of (4.1), we have 

tp0 = !h+ oc, 

where tx. is an arbitrary constant and the quantity 

a =cp~ = 2~0 '~"1o (Ro) 

gives the first-order correction to the frequency. 
Taking into account the constant R0(also P 0 , 

Q0) and cp~, we get from Eq. (4.2) 

2R~ + 00~: R 1 = -Al(Ro) + F.1_, (4.3) 

2R ' · + (2a- o'Y10 ) R ocpl oRo I 

= R 0o2 - B1 (Ro) + F11. 

'Separating the regular components r 1 and o 1 in R 1 
.and cp 1, i.e., taking 

we get, upon substitution of Eq. (4.4) in (4.3), the 
following values of the corrections to the radius 
of the generating circle r 1 and the second-order 
correction to the frequency o1: 

A1 (R0 ) 

r I = - oCihofoRo ' 

01 = L~o [ Roo2 - B1 (R0)- ( 2'0- 0~:}1 J, 
while the equations for the amplitude fluctuation p 
and the phase fluctuation X assume the form 

"' 
( ) ( ') exp {- P1('r + 't'')} \ 

po:p't= 4 J 

where 

1 iJ<D1o 
p 1 = 2 iJRo ' 

q l = _!__ (2o - o'P',o )·= -.!_~('Flo\ 
2Ro oR0 2 iJR0 R0 ) • 

The quantity p 1, the increment of the system, 
characterizes the "stability" of the generating 
circle with respect to radial departures (for a 
stable circle p 1 > 0). For p we have an equation 
of the relaxation type with a characteristic 

relaxation time 1/p1 in terms of r (i.e., 1/p.p1 m 

terms of t). The tracing point, after being 
displaced from the generating circle by the 
fluctuation force, is returned to it as though it 
were attached by a spring and moving in a viscous 
medium. The existence of a quasi-elastic force 
- p p implies the stationary properties of the 
amplitude fluctuations and the existence of a 
finite steady-state value of p2. 

In calculating the steady-state correlation 
function,one may use the solution of the first 
equation of Eq. (4.5) under initial conditions 
corresponding to the vanishing of the quantities 
of interest at r = - oo • 

Using Eq. (2.4), we find 

.,. 
~ eP•6• F .1_ (&1) F .1_ (&2) d62 

-00 (4.6) 
"' .,. 

= flf exp {- p1 (o: + o:')} ~ eP,O,d61~eP•6•o (62 - 61 ) d62 = ~~1exp {-PI! 't'- 't I}. 

In particular, the mean-square of p is 

p2 = p.C/4PI· (4.7) 

Because the system being considered is an 
isolated one, there is no steady state as far as 
phase fluctuations are concerned. If we take the 
phase x= 0 at time 'i = 0, i.e.' if an ensemble of 
systems with this initial value of X is considered, 
then, in the course of time, the tracing points spread 
apart on the generating circle on both sides of the 
regular {"dynamic") tracing points and the mean-

square value of X will increase in accordance with 
a diffusion law {proportional to r). In reference 1 
this situation was aptly described (in terms 9f the 
phase plane x 0, x 0) as the "motion of an intoxi-

cated person moving in a channel in which there 
is a steady current". In the plane which de
scribes the slowly varying amplitudes, one in which 
the regular rotation along the generating circle is 
not shown, the indicated spreading is similar to 
the usual one-dimensional motion of a Brownian 
particle in a motionless medium except that the 
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fluctuations in xdepend not only on the' direct 
effect of the random force Fj1 but also on the 
amplitude fluctuations. The effect of the 
latter, which are expressed by the term q pin the 
second equation of (4.5) arises when q 1 ~ 0, i.e., 

either in the presence of a first-order frequency 
correction ('I' 10#= 0) or in the absence of isochro
nism in the neighborhood of the generating circle 
(a 'I\/ aR 0 =I= 0), or as a result of both (if they do 
not cancel; this occurs when 'I' 10""' R 0). 

Taking into account the absence of a steady
state for X• we take the solution of the second 
equation of (4.5) which corresponds to the initial 
conditions X= 0 for .,. = 0. 

T T 

X (-c)=- ql ~ p (e) de + 2~0 ~ F 11 (G) de. 
0 0 

Since, in this section, we wish only to 
illustrate the application of symbolic equations 
and correlation theory in problems which have 
already been solved, we will limit ourselves to 
the calculation of the mean-square value of X· 
Assuming that the fluctuations of amplitude have 
already been determined, we make use of the 
correlation function (4.6) for p. 

Since p( .,-) and Fj1 ( .,-) are not cross-correlated, 
we have 

T 't" 

X2 (-c) =qi ~del~ r-(.,..,..111..,..)-p..,.--(11_,.2) de2 
0 0 

T 't" 

+ 4~2 ~ del ~F -;:;:--// (.,.,.IJ-,..l)-::F::-11---:(-U2-:-) de2 • 

0 0 0 

Substituting Eq. (4.6) in (2.6), we have 

x2 (-c)=~ ..!!..!. (p1-c + e-P•'~"-1) + 2 . c { 2 't' } 

2 p~ Ro 

The first term depends on the amplitude .fluctua
tion, the second on the direct effect of the pulses. 
On the same basis, the second term increases in 
accordance with a diffusion law; the first, 
however, is subject to such a law only when 
p 1r » 1 and then 

- 2.- !LC (q~ 1 ·) 
X(")=- -+- -c. 

2 Pi R~ 
(4.8) 

If p 1.,. « 1 (and also if .,. is much larger than the 
time between pulses, as is required for the 
formulation of the problem in terms of symbolic 

. ) h * -- !Lc (c~'t'2 't' ' equatiOns t en x2 ('t) =- '- + 2). 
2 2pl R0 . 

5. VACUUM-TUBE OSCILLATOR 

As an example, which will also be needed for 
what follows, we consider the vacuum-tube oscil
lator whose circuit is shown in the Figure. Using 

the symbols given in the Figure, we have the equation 

dl 1 \ 
L dt1 + Rl = c j (/a -I) dtt 

(5.1) 

+ ~0 sin 6lt1 , Vg = M ~~ 

(The time is indicated by t 1 while the symbol t is 
is reserved for the dimensionless time}. In the 
following paper, this same example will be 
considered in connection with synchronization; 
hence we introduce here a sinusoidal emf, which 
is included in the condenser branch to simplify 
the equations. 

The plate current is given by the expression 

Ia = Sv,/ 1- 3vv~s) +I (tl), (5.2) 
a-shot 

where S and V are the usual parameters associated 
with the cubic characteristics of the tube and 
I h is the random part of the plate arising from 

a-s ot 
the shot effect**· 

Introducing the dimensionless time t = cut 1 and 
the dimensionless current x = 1/10, where 

~ = V2 (MS- RC)JM3S6l, (5.3) 

and using the notation 

*Note added in proof.- In a recent paper by 
Go,norovskii [ Dokl. Akad. Nauk SSSR 101, 657 (1955)] it 
is found that for small .,. the mean-square value of the 
random deviation of the phase, in general, does not 
contain terms to the first power in .,. as though there were 
no direct effect of the pulses. We propose to examine 
the reasons for this disagreement elsewhere. 

** For the present, in the interest of simplicity y;e 
omit the thermal emf in the R branch (cf. Sect. 6 of the 
following paper). 
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1 (J)2 

~ = L C ' ro~ = 1 - p.Ll, 

(MS-RC)ro~ ro~laT (t1) = 2F(t) ____ ___.::... =- p., 2/ flo • 
(J) w 0 

(5.4) 

<Bo 
Lwfo = 2p.H, 

from Eqs. (5.1) amd (5.2) we get equations in the 
form of Eq. (2.1) in which 

j(x, ~;, t, p.) 
(5.5) 

_ dx [1- ..!_ (dx)2] + Llx + 2H cost. 
- dt 3 dt 

In considering the case which is of interest to us 
at this time, the isolated system, it suffices to 
take H = 0 and~= 0, i.e., to take cu = cu 0 every
where in Eq. (5.4). Then 

dx dx [ 1 (d::r)2] f(x, dt ,t,p.)=dt" l-;r dt • (5.6) 

Assuming the shot-effect to be o- correlated, 

I (t1) I (t~) = C0a(t~- t1) 
a-shot a-shot 

(C =I e, e is the charge of the electron), and 0 a 

(5.7) 

making use of the relations (5.4) between F(t) and 

~a-shot(t1)' 

I (t')l (t~)=p.4J~F(t)F(t'f 
a-shot a-shot 

- p.4I; C 8 (t~- ft} ((I)= (l)o), 
we get o 

Omitting the intermediate steps, we can write 
directly Eq. (4.1) for the case (5.6) 

( R2) Ra 
2R~-Ro 1--f =0, Qo= 9~' 

2Ro9~ = 0, P0 = 0. 

Thus '¥ = 0, i.e., there is no first-order 
10 

frequency correction, the system is completely 
isochronous and R0 = 2. In Eqs. (4.3), A 1 = 0, 

since r ( the correction to the radius of the 
1 

generating circle) does not appear and 
B = R 5 I 128 = 114. Thus, taking into account 1 0 
second order corrections, the fundamental frequency 
is found to be n = 1 - ( p.2 I 16) and Eqs. (4.5) for 
p and xare: 

p' + p = F j_ I 2, 
x' = F u 14 (Pl = 1, ql = O). 

Expressions (4.7) and (4.8) for the .mean-square 
values of p and X assume the form 

- !LC P2-- 4, (5.9) 

We revert to the initial (physical) parameters. The 
amplitude fluctuations of the current in the circuit 
are~/= I p.p and the phase fluctuations 11cp= P.X· 
From Eq~. (5.3), (5.4), (5 .. 8) and (5.9), we get, 
therefore, 

- l~!J.3C Cow0 _ Co 
Ll/2 = -4-=~- 4(A1S-RC)' 

(5.10) 

__ !Lac.. C0 wgt1 C0w~MJS t 
Llcp2 = -H- = 812 = 811 2 (MS-RC) 1 ' 

0 

where C = le is the constant which appears in 
0 a 

the correlation function of the shot-noise (5. 7). 
Close to the limit of self-excitation (MS- RC -+01 

i.e., close to the limit of stability of the oscil
lating mode, the "stability" of the generating 
circle tends toward zero. In this case there occm:s 
an unlimited increase of the intensity of the 
amplitude fluctuations and of the diffusion coef
ficient of the phase fluctuations. Actually, the 
increase in the fluctuations is not unlimited; 
nevertheless it is large enough to invalidate the 
order-of-magnitude assumptions with regard to p.p 
and /LX upon which this analysis is based. The 
question of fluctuations close to the limit of self
excitation, in which the random effects in the 
generating circle become comparable to its radius, 
requires special attention. 

Translated by H. Lashinsky 
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