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present in not too small a concentration, is some
what less ( 1-3 ev is sufficient) than the ioniza
tion potential V 0 • In such a case, because of the 

exponential dependence of the fractional ioniza
tion on the ionization potential, x 0 is so small 

that the validity of the inequality in Eq. (5) is 
guaranteed. 

As a result, Eq. (1) can now be rewritten in 
the form: 

Using Eqs. (3) and (6), it is possible to find 
all the N., the concentrations which were to be 

' 

(6) 

determined. The temperature, T, and the fractional. 
ionization of one of the components can be found 
in the usual manner2 • 

An ex,periment has been carried out for the 
simplest case, i = 2, i.e., a three-component arc
vapor*. Magnesium and zinc were used as the 
test elements. The temperature was determined 
from the ratio of the intensities of the zinc atomic 
lines, A= 3072 A and A= 3076 A, the relative 
(transition) probabilities of which are known 4 • The 
fractional ionization of the magnesium was found 
experimentally from the lines Mg I, A = 2779 A and 

0 

Mg II, A= 2795 A (as in reference 3 ). Among the 
Zn and Mg lines, it was possible to f!nd lines 
with known transition probabilities 4 ' by whrch 

the ratio of the concentrations of Zn and Mg atoms 
could be determined f,rom Eq. (3). We seh0cted the 
lines Mg I, A= 2779 A and Zn I, A= 2741 A. 

All measurements were made by the photographic
photometric method. Zinc was introduced in the 
test sample in the form of a solution of ZnSO 4 • 

magnesium in the form of a solution of MgC0 3 and 

the base element of the test sample was carbon 
powder. The percentages by weight ofthematerials 
in the test sample were: ZnSO 4 - 10 %; MgC0 3 -

3%; c- 87%. 
The temperature of the arc-vapor was found to 

be 6300° K. The measurements of the fractional 
ionization of the magnesium atoms showed that 
xM = 0.43. A calculation using these values of 
T :nd xMg in the Saha formula gives Xzn = 3.6 

x 10-2 and-; = 4 x 10" 3 . Correspondingly, the 
computed concentrations of magnesium and zinc 

were found to be NM = 7.2 x 10 15 cm- 3 ; Nzn 
16 -3 g 

= 4.3 x 10 em . 
Thus, in the test sample, the number of zinc 

atoms is greater than the number of magnesium 
atoms by a factor of 1.5; in the discharge-gap, 

however, it is 6 times greater. It follows that the 
rate at which zinc atoms from the test sample 
enter the discharge is 4 times greater than the 
rate at which magnesium atoms enter. This is in 
agreement with Rusanov's data on volatile 
elements 6 . 

* The experiment was carried out by the student A. E. 
Kontorovich. 
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T'HE work of I. V. Meshcherskov laid the founda
tions for the non-relativistic mechanics of 

bodies of variable mass. Meshcherskov's equations 
are used to determine the motion of rockets, heavenly 
bodies of variable mass and for the solution of a 
range of other mechanical problems. These equa
tions, however, which are developed on the basis 
of Newtonian mechanics, are valid only in the range 
of velocities small with respect to the velocity of 
light c. 

It is entirely possible that in the future ,veloci
ties approaching that of light will be of interest. 
There exist also radioactive particles which 
move with velocities close to c. These particles 
have variable mass. 

For these cases it is necessary to apply 
relativistic mechanics to a material point of 
variable mass. 

For the investigation of a single particle of 
variable mass we will use four dimensional 
Minkowski space. Let x 1, x 2 , x 3 be the usual 
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space coordinates. The fourth coordinate is x 4 

= ict, where c is the velocity of light in vacuum 
and t is time. The Minkowski space xi will be 
denoted by R4 and the space (xl' x 2 , x 3 ) by R3 • 

Every material particle describes a world line in 
R4 . The distance between two infinitesimally 
close events along any world line is given by 

ds2 = - d.x; d.x1• (1) 

The four-dimensional velocity of a particle is 
given by the vector 

To find its component, we note that according 
to Eq. (1), 

(3) 

where vis the ordinary three-dimensional velocity 
of the particle in R3 • In this way 

ua. = va. Vi- (v2 'c2), a= i, 2, 3, 

u4 = i I Vi- (v2jc2). 

The components of the four-velocity are not 
independent. We note that for dxz =- ds 2 , we have 

u; =-1. (4) 

In a certain coordinate system, which we shall 
consider at rest, at a given time t, we investigate 
two material points, one with mass m having veloc
ity u1 with respect to the given system, the other 
with mass dm having celocity a1• At the time 
t ! dt these two points form one point (combination 
of mass) of mass m + dm, whose velocity is u. 

' + dui" Instead of the time t as parameter, we intro-
duce the a.·c length s, described by the point of 
mass m. 

We now apply the momentum theorem of rela
tivistic mechanics. At the instant s, the momentum 
of the system is 

emu1 + cdma1, 

whereas at the instant s + ds it is 

e (m + dm) (u; + du1). 

The increase in momentum is 

dp1 =em du1 + edm (u1- a1). 

We introduce the force four-vector, determined by 
the derivative 

(5) 

We shall now write Eq. (6) in R . The force 
vector in R3 we define by the equ~tion 

F = c (h !2. / 3) Vi- (v2/c2). 

The first components of Eq. (6) give 

d mv 
dt Vi - (V2ic") 

a dm =F. (7) 
Vi- (a 2/c2) dt 

For velocities v and a small with respect to c, 
Eq. (7) reduces to Mershcherkov's nonrelativistic 
equation 

dv dm 
m dt + (it (v- a) = F. (8) 

Equation (6) or (7) represents the relativistic 
generalization of Mershcherkov' s basic Eq. (8) for 
a material point of variable mass. 

If the velocity of the added mass is relativistic, 
but that of mass m is nonrelativistic, then Eq. (7) 
assumes the form 

d 
-- (mv)
dt 

a dm =F. 
Vi - (a"fc") dt 

If the velocity of the added mass vanishes 
(a= 0), then Eq. (7) assumes the form 

d mv 

dt Yi- (v2/c2) 
=F. 

(9) 

(10) 

For a = v (the relative velocity of the combining 
masses is zero), Eq. (7) takes the form 

d v 
m -d-t -;,-;-:;=,==;===- = F. 

r i- (v"le") 

Let us form the scalar product 

. dui dm 
l 1u1 = em ds u1+ c ds (u1u1- a1u1). 

(ll) 

Since u. u. = -1, and therefore ( du./ds)u. = 0, 
£ t ' ' 

then 

dm 
f.u. = -e -(1 + a.u) 

I I dS I i • (12) 

In R 3 , Eq. (12) has the following form 

d mc2 

Fv = -d-t :;-;V;=1;==_=:=(v=;:;2=:/=c;;:::2)=- (13) 

- dm (c2V i- (v2 I c2) + av ) 
dt , V i - (a 2 1 c2) ' 
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One must hear in mind that in all these equations 
m depends on time. It can depend on time either 
explicitly, or implicitly by means of quantities 
determining the position or motion of the point. If, 
for example, m = f (xtX, xtX, t ), then 

dm am • am .• am 
(it= a.xa. .X a. + axa: X a. + (fj""" (ex= 1, 2, 3). 

The author expresses his gratitude toProfessor 
Kh. Khristov for valuable criticism given in the 
examination of this work. 
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U P to the present time the hyperfine structure of 
paramagnetic resonance in compounds of ele

ments of the iron group has been studied at high 
frequencies, usually of the order of 10 10 cps. In 
this frequency re.gion, strong magnetic fields are 
required to satisfy the conditions for resonance in 
elements of the iron group. Such fields give rise 
to splittings at least an order of magnitude greater 
than the splittings which result from the inter
actions of electrons with the moments of the 
nucleus. 

At much lower frequencies, say in the decimeter 
or meter region, conditions obtain which correspond 
to the intermediate- or weak-field Zeeman effect1"3. 
Low-frequency studies can he useful not only in 
checking the general theory of paramagnetic 
resonance absorption in crystals at low and inter· 
mediate fields 4, hut also in obtaining more pre-

cise determinations of the hyperfine structure 
constant inasmuch as under these conditions the 
energy splittings produced by the nuclear moments 
become equal to or greater than the splitting pro
duced by the de magnetic field. 

We have examined the paramagnetic resonance in 
a CuK 2 (S0 4 ) 2 x 6H 2 0 single-crystal diluted in 
an isomorphous zinc salt in the ratio 1:200 at a 
frequency of 526.7 4 x 10 6 cps at liquid air 
temperature. The paramagnetic resonance was ob
served using the grid-current method 5 in conjunc· 
tion with modulation of the de magnetic field. 
The free radical ex, ex- diphenyl {3- picryl hydrazyl 
was used to calibrate the magnetic field. The ac· 
curacy in the determination of the resonance 
values of the field was limited by the width of the 
absorption line and consequently was not better 
than 2%. 

It is known that the unit cell of a Tutton·salt 
cyrstal contains two copper ions 6 and that the 
tetragonal symmetry axes of the electric fields 
around these ions form an angle of 96°. 

We investigated the paramagnetic resonancespec
trum in the case for which the de magnetic field 
was oriented along one of the tetragonal symmetry 
axes of the electri.c field. Six absorption lines 
were found. The resonance values in oersteds of 
the de magnetic field are shown in the Table. 

An interpretation of the paramagnetic resonance 
spectrum at strong fields of the salt which is the 
subject of this paper was carried out in reference 
7 with the use of the following "spin" Hamilton· 
ian: 

(1) 

+ HySy) + ASzlz + B (S.J.x + S/y) 

+ Q [ 1; - +I (I + 1)] , 
where gil and gl are, respectively, the spectro

scopic splitting factors parallel and perpendicular 
to the tetragonal symmetry axis of the electric 
field; A, B and Q are hyperfine structure con· 
stants of which the first two depend on the mag
netic moment of the nucleus and the last depends 
on the nuclear electric quadrupole moment. 

For the frequency which we used, the applied 
field corresponds to that of the intermediate field 

Resonance values of the de magnetic field in oersteds 

' 
E:xp erimental 36 96 143 168 216 250 

Calculated 36.11 95.85 140 168.5 221 252.5 


