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On the basis of the results of paper I, the dispersion properties of plasma are investi­
~ated in various special cases. It is shown that the motion of ions is of essential 
Importance in most cases of propagation of longitudinal waves in discharge tubes. Values 
are found for the spatial period and logarithmic decrement as functions of the parameters 
of the discharge. 

I. LONGITUDINAL VIBRATIONS OF PJ::.ASMA 
IN THE HIGH FREQUENCY REGION 

FOR the case of plasma vibration at high frequen-
cy, the "dispersion" equation (57) of paper I 

simplifies considerably, and is easy to solve, so 
that the frequency dependence of the wave number 
and logarithmic decrement are obtained in explicit 
form. This equation, expressed in terms of dimen­
sionless integration variables, has the form: 

__ 1_ + _1_~~ exp {-u2/2} du 
k2a2 k 2a2 ,r.;-- (3 - u ' 2 2 r .c.-rr c, 2 

where '1_=Y01147TNJ is the Debye length for the 
electro~s, a2 =Y 02 I ~TTNe 2 is th.e Deb~e length 
for the wns, u = Y m I M 1 ( ~- ~ 1) m the mtegrals 
over contour C1, u=vMI02 (~-~02) in the inte­
grals over contour C 2: 

We shall look for a solution with small loga­
rithmic decrement , i.e., we shall assume tha~ 

(2) 

21 

(x + ij = k). (I) 

In integrating along the contours C 1 and C2 in 
Eq. (1), the points A and f32 are circled from below , 
so that each of these int.egrals can be written as 
the sum of an integral alo~g the real axis between 
the limits -oo to +oc, plus the residue of the inte­
grand at the singularity, multiplied by 71 i [since 
according to condition (I) ' 

.Re ~~ 2> Im ~1 , 

and 

.Re ~~Im~2 , 

as can be seen from what follows ]. Now Eq. (l) 
is expressed in the form: 

1 +oo 
I=---+-1-~ \ exp {-u2 /2} du· 

k2a~ k2a~ V2n- ) (31- u -oo (3) 

-q/ ~ a~~2 exp {-:- ~i/2} 
1 

Sinc.e ~e are considering the high frequency 
case, It IS natural to introduce the conditions: 
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(II) 

which mean physically that the frequency, as 
measured in a coordinate system moving.with the 
electron current, is much greater than the frequen­
cy of electron-atom collisions; and the frequency 
of vibration, measured in a coordinate system 
moving with the ion current, is much greater than 
the frequency of ion-atom collisions. 

Keeping in mind conditions (I) and (II), we ob­
tain the following values for /31 and f3 2 in zeroth 
approximation: 

We also require that· 

1: -~o2l~v~ ,(m} 

i.e., the phase velocity of the wave as measured 
in a coordinate system moving with the electron 
current shall be much greater than their mean 
thermal velocity, and that the phase velocity as 
measured in a system moving with the ions shall be 
much greater than the average thermal velocity\ of 
the ions. In this case ,[81 J ::> l and [82 J > l. The 
conditions (II) and (III) are a simple generaliza­
tion of the analogous conditions that are introduced 
in solving the "dispersion" equation for high 
frequencies, when one neglects the ions and the 
drift of the charged particles. 

Expanding the factors multiplying the exponen­
tials in the integrands in Eq. (3) in powers of 
u/ f31 and u/ f32 , and limiting ourselves to five 
terms in the expansion, we obtain: 

-iv; k~;2 exp{-M/2} 
1 

(4) 

Separating into real and imaginary parts, we 
find in first approximation after a simple calcu­
lation, the well known dispersion equation 
relating the wave number K to the vibration 
frequency w, and the expression for the loga­
rithmic decrement y: 

(5) 

(6) 

Terms due to the ions will be of at least first 
order in the small quantity m / M compared to the 
electronic terms, and have therefore been omitted 
in deriving the relations (5) and (6). 

These last relations were obtained under the 
assumption that the conditions (1)-(III) were ful­
filled. It is easy to see that these conditions are 
fulfilled for sufficiently long wave lengths 
(Ka1 < l) at pressures sufficiently low so that 

The first term in the expression for the absorption 
coefficient is due to elastic collisions; the second 
represents the loss of energy, via Coulomb inter­
action, from electrons participating in the ordered 
motion, to electrons in random motion. Both the 
collisions and the loss of phase relation by the 
particles lead to damping of the disturbance as we 
move away from the source. In fact, the expres­
sion in the denominator of the right hand side of 
Eq. (6) is just the group velocity of the wave, in 
first approximation: 

which is positive, since its direction coincides 
with the direction of propagation of the disturb­
ance. Thus, for a wave propagating away from 
the ·.sotQ.'ce, y is positive, which represents a 

(7) 
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damping. It is mteresting that for very long wave 
lengths, as follows from (7), the perturbation. 
propagates in the direction of the drift velocity 
'Of the electrons. 

The linear absorption coefficient Y which we 
have obtained is related to the value of the time 
decrement. 1 Yt by: 

Relation (8) is also satisfied for all the other 
cases considered in this paper, which indicates 
its universality. 

2. LONGITUDINAL VIBRATIONS OF PLASMA 
IN THE LOW FREQUENCY REGION 

Let us consider the case of excitation of 
plasma vibrations by a perturbation of low 
frequency. We include the limiting case UJ=O, 
which corresponds to the appearance of a 
stationary spatial stratification in the particle 

(8) 

distribution, under the action of a given jump of 
the potential at the boundary. 

In the case we are now considering, where the 
frequency is low, and the average translational 
velocities of the electrons,~o1, and of the ions, 
~02 , are arbitrary, the integrals in Eq. (l) can­
not be expressed in terms of elementary functions. 
They can however be expressed in terms of the 
error integral with complex argument 2 

Using Fok1 s relation 3: 

r>tV2 
= 112e-fl'/Z ~ ez'dz- i ~e-[!.' 12 

-ioo 

1 G. E. Gordeev, ]. Exper. Theoret. Phys. USSR 22, 
230 (1952) 

and carrying out some simple transformations, we 
rewrite Eq. (l) in the form: 

where the following notation is used: 

( 10) 

2 r z· f3/V2 
exp {- ~~/2} ( 1 + V1~ ~ ez'dz) = 1X3 + io3 , 

0 

In Eq. (9) integrals of the type of (ll) appear, for 
which tables are available. 

Going over to dimensionless quantities, and 
choosing the Debye length for electrons, al, as 
unit of length, we will have in place of (9): 

k*2=-1-(81/82) -i v:;(1X1+io1)(1X3+io3) 
- (81 1 82) i V;;(1X2+ io2)(1X4 + i<34), (12) 

where k* is the dimensionless complex wave num­
ber (k* =ka1). Equation (12) can be solved 
formally, giving K* and y * in terms of oc 1, o 1, oc2, 
02, oc3, 03, oc4,o4. In fact, setting K* =K* +icy* in 
Eq. (12) and sepru:ating real and imaginary parts, 
we get a pair of algebraic equations whose solu­
tion can be written in the form: 

x.* = + v;.y 'Y* = + -v-y 
-- ' ' - ' 

(13) 

2 V. N. Faddeeva and N. N. Terentiev, Tables of where 
Values of the Prpbabilitf Integral ~or Complex Argument, 
G.I.T.T.L. (Gov T. Pub . Tech. Lit. ), 1954; M. Born, 
Optics. . 

3 V. A. Fok, Diffraction of Radio Waves, Publishing 
House, Acad. Sci. USSR, 1946. 

y=(gl+lfg~+g~ )/2, 

Y = (- g 1 + V gi + g;) I 2. 

(14) 

(15) 
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For given K*, the sign of y* is uniquely deter­
mined by the sign of g 2 , since 

The relations (13)-(15) enable us to compute 

(16) 

the period of the spatial inhomogeneity in the plasma, 
..\*= 217/ K 'f, if we are given the damping coefficient 
y* and 'the frequency w (in the general case, for 
a given frequency we get different values of the 
wave length ..\*, depending on the damping coef­
ficient y*). For practical purposes,it is more 
convenient to give oc 1 and o1 rather than wand 
y*. Assig~ing oc 1 and o1 determines .the values 

of w, y *, K* and correspondingly oc 2 , o2 , oc3 , o3, 

oc4 and o4• However, in the general case this 
dependence is not explicit. The values of oc2, 02 
can be found immediately for given ocl and 01 only 
if we neglect collisions (knowing oc 2 and o2 , we 
can find from the tables2 values of oc3 , o3 , oc4 , 

o4 , and corresponding to these K*, y* and w). 
Actually, since ,82 is related to ,81 by the relation 

( 17) 

,(M.i(l 1) 
,81 immediately determines ,82 if v e ~ --- = 0 

0 2"" 'T2 'Tl 

Inclusion of this term makes it very difficult to 
establish the relation between w, K* and ·y *, 
which we must know in order to match values of 
these quantities which will satisfy the "disper­
sion" equation. Consequently, finding an exact 
solution of the "dispersion" equation in the 
general case is practically impossible. 

The fact that collisions were not considered in 
using the approximation of the Boltzmann integral 
to calculate the first approximation for the dis­
tribution function, cannot have any decisive effect 
on the value of the space period of a vibration 
process in theplasma if that process is the result 
of Coulomb interaction between the particles~ 

.,. This last does not mean that in the present theory 
the syace period does not depend at all ort the number 
of co lisions. This dependence enters implicitly into 
the expression for the zeroth approximation to the dis­
tribution function: the velocity of drift and the concen­
tration of charged particles are determined by it. 

However, if we are investigating absorption, the 
collisions can no longer be ignored, so that, having 
dropped them, we must renounce any attempt to 
find the value of the logarithmic decrement. All 
we can do in this respect is to show the existence 
of waves with increasing amplitude in the absence 
of collisions. 

In this same way we can show the possibility 
for occurrence of undamped or weakly damped 
waves, despite the considerable absorption due to 
collisions. 

We consider in detail the case W= 0. Here all 
the calculations simplify considerably, since in 
this case ocl and o1 are uniquely determined by 
the parameters of the discharge, and we can then 
find K* and determine the sign of y * (as we point­
ed out above, it is meaningless to determine a 
numerical value for ·y * if we neglect collisions). 
It is typical that, for the case of W= 0, the values 
of K* andy* are determined uniquely, whereas in 
the general case of wof 0, there is a whole sequen­
ce of values of K * and Y* which correspond to a 
definite frequency. 

Assuming that the experimentally observed 
stratified illumination of the positive column 
(striations) could be due to the presence of a 
longitudinal density wave, we can compare the 
values of ..\=..\*a thus obtained with the experi­
mental values. fn this interpretation, the case of 
W= 0 corresponds to fixed striations, the case of 
wofO to moving ones. 

The comparison of theory with experiment is 
made difficult by the lack of precise information 
concerning some of the discharge parameters which 
are used in the theory. Usually in experiments on 
gas discharges only the following data are given: 
the electron concentration N, which is approxi­
mately equal to the ion concentration, the dimen­
sions of the tube, the current I to the anode (or 
the current density j), the electron temperature T 1' 

and the spatial period of striation A. s • 

In our formulas there appear the expressions, not 
for the currents, but rather for the average veloci­
ties of the directed motion of electrons and ions. 
This velocity for the electrons can be determined 
from the current density j by the familiar relation: 

The order of magnitude of the ionic drift velo­
city can be determined from the simplest gas­
kinetic considerations: 

(18) 
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Table l 

N Radius R or 
Gas electrons T10K Pressure cross section S j or I 

per cm3 in em Hg of tube 

N14 
2 

2x 108 3x 104 0.16 3.9 em 0.27 mA/cm2 

Ne37 1010 3x 104 1-2 3.5 , Ne 4xl06'' 
1.36 

H4 
2 

4x 109 1.2 X 104 0.63 1.1 " BmA 

Hg.:w.6 l. 77 X 1010 3x 104 3 x 10-3 0.6x0.4 cm2 20m A 

As in em 
A in em for A in em for A in em for A in em for Literature 

Gas rr2= 1110 T 1 T 2=1/5 T 1 T 2 =1/2 T 1 T 2=3000K references 

Nl4 
2 

6 1.2 

Ne37 2.5 0.45 

H4 
2 

0.9 0.16 

Hg.:w.6 0.2 0.04 

We still need to know the ion temperature, which 
also is not determined in experiments on striations. 
Apparently it is impossible to speak of the ion 
temperature in a plasma without specific informa­
tion about the current distribution. Thus the ion 
temperature must be investigated separately in 
each experiment. 

For orientation, we have used those data on ion 
temperatures which are available in the literature 
4-6. In accordance with this information, we 
shall compute the periods of striations setting the 
ion temperature 72 equal, in turn, to {l/lO)T1, 

4 L. Tonks, M. Mott-Smith and I. Langmuir; Phys. Re'll 
28 , 104 (1926). 

5 L. Tonks and I. Langmuir, Phys. Rev. 34, iuy 
(1929) 0 

6 V. F. Kovalenko, D.A. Rqzhanskii and L.A. Sena, 
Zh. Tekb.n. Fiz. 4, 1271-1688 (1934). 

2.9 24 0.12 [7] 

1.1 10.70 0.044 [8-9] 

0.45 3.20 0.041 [IO] 

0.085 0.56 0.013 [11] 

(l/5) Ji_, {l/2)1i and room temperature. 
The experimental data7-ll in Table l are given 

along with the value of the space period computed 
theoretically for the ion temperatures shown there. 

Table l shows that, for slightly non-isothermal 
plasma (1]_ /'f2~ 2 -10) the space period of 
stationary striations as calculated theoretically 
agrees in order of magnitude with the experimen­
tal value. There is of course no expectation of 
exact agreement of theory and experiment, since 
our formulation of the problem is highly idealized. 

7 D. Oettin!$en, Ann. d. Phys., 19, 519(1934) 
8 A. A. Zaltsev, Vestn. M.G.U. (Moscow St. Univ.) 

ser. phys. math. and nat. sci., 10, 41 (1951). 
9 A. A. Zaitsev and lu. L. Klimontovich, Vestn. 

M.G.U. (Moscow St. Univ.) ser. phys. math. and nat. 
sci., 12, 59 (1951). 
10 H. Paul, Z. Phys. 97, 330 (1953). 
11 H. J. Merill and H. W. Webb, Phys. Rev. 55, 

1069 (1939). 
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In particdar, the effect of the 'radius of the tube 
on the period of striations has not been considered. 

Nevertheless, order of magnitude calculations 
are still of interest, since for striation periods 
smaller than the tube diameter (which is the case 
for the experiments considered), we should expect 
that the tube radius should not seriously affect 
the space period. Calculations of the space period 
ommiting the ions show that the contribution of 
the ions to the value of.\. will be the same in 
order of magnitude as that of the electrons. 
Consequently in this case the motion of the ions 
cannot be neglected. 

In the case of highty non-isothermal plasma 
(J2 = 300 °K), only the ionic vibrations are import­
ant. This can be shown by comparing the value of 
the period computed taking account of the ions 
with the value for the electrons alone. 

We should also point out that in the case of 
electrons alone, the damping coefficient y is 
always positive, {g > 0), for positive values of K, 

i.e., damping occur~. Since the inclusion of col­
lisions leads to even greater damping, spatial 
layering is not possible in this case. Joint oscil­
lations of electrons and ions lead to negative 
values of y (g :( 0). This increase in amplitude, 
compensating the damping caused by collisions, 
can result in undamped waves. 

A special feature of the results obtained is the 
occurrence of s~y striations for It o.1 1.< 
0.93v = 0.93 y2®1/m, in complete accord with 
exper~ent. The point is that, in several papers 
on the theory of striations, a condition has been 
presented for the existence of stationary stria­
tions 

supposedly following from the kinetic equations. 
This condition was first derived by Vlasov12 from 
a form of the dispersion equation which was not 
entirely correct,- since it contained a divergent 
integral. But in a paper of Klimontovic~ 13, the 
same condition was obtained on the basis of a 
correct dispersion equation. By considering an 
unbounded plasma, and neglecting collisions, 
Klimontovich arrived at the result that in such a 
plasma there cannot occur a time-independent 
distribution of electric field of the form 

12 A. Vlasov, Theory of Many Particles, Govt. Pub!. 
House 1950. . 

13 Iu. L. Klimontovich, Journal of Expenmental and 
Theoretical Physics., 21, 1292 (1951) .. 

E =E0 e- P"(p ='Y+iK), for I y I> IK 1. (The last 
condition is equivalent to the limitation on the 
drift velocity mentioned above). However, this 
condition states only that in an unbounded plasma 
there can exist no exponentially increasing or 
decreasing distribution of electron density; this 
assertion, though. certainly correct, has nothing 
to do with the appearance of striations. First of 
all, when we take accou~t of the boundary {as is 
done in this paper), solutions of the type 
E =E0 exp { -( y+ iK}X} with IY I> IK I do 

exist and satisfy the dispersion equation. Further­
more the true criterion for occurrence of sratial 
periodicity will have the form: IK J > I'>: ,where 
the quantity y must be calculated by takmg ac­
count of collisions. This condition gives a rela­
tion between the values of the drift velocities of 
the particles, their thermal velocities~ and t~e 
frequency of collision of charged particles with 
neutrals. 

We have considered the case of the appearance 
of spatial periodicity in the distribution of the 
charge density under the action of a jump in poten­
tial.at some point of the plasma (w= 0). If the 
perturbation on the boundary varies periodically 
with frequency w, it will excite in the plasma a 
traveling wave with phase velocity wj K. For 
small phase velocities, namely for~/ K I « t0~ I t?e 
dispersion equation remains, in first approximatiOn, 
the same as for case of w = 0 .. For such waves, 
the period of the traveling spatial inhomogeneity 
will be the same as for stationary striations. This 
result is in agreement' witli experiment. 

Usually for plasma in gas discharge. tubes, 
I g l-106- 108 em/sec·, I t"02 l-104 -106 em/sec. 

For0fhe centimeter wave region, the condition im­
posed on the phase velocity of the wave corres­
ponds to the frequency range w < 104 -106 c.p.s., 
to which the results of this section are therefore 
applicable. 

3. THE CASE OF HIGH DRIFT VELOCITIES 

For high drift velocity of the electrons, the. . 
problem of propagation in the plasma of a penodic­
ally varying perturbation, in.cludin~ effects of 
collisions of electrons and IOns With gas atoms, 
can be completely solved by a method of suc­
cessive approximations {just as in the case of 
high frequencies). In this case, the "dispersion" 
equation enables us to give explicitly the 
dependence of the space period of the inhomoge­
neity and the damping coefficient on the vibration 
frequency and the parameters of the discharge. 

We shall assume that the drift velocity of the 
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electrons is much greater than their thermal 
velocity, i.e., 

I ~o1l ~ VTe = V28I/m. (20) 

A similar relation will hold for the ions: 

I ~o2l ~ Vri = V2t12/M. (21) 

We also assume that the following conditions are 
satisfied: 

(22) 

Then,expanding the denominators of the integrands 
in Eq. (57) of paper I in powers of the small para­
meters, 

and 

and limiting ourselves to the first approximation 
in computing the integrals, we obtain 

(23) 

Y 1t 2 [(m )'/, ( w i ) + -Wto - E ----
2 Ell ·Ol k '<1k 

+ .. ;-:; 2 [(M)'/, (t w i ) Jl 2 w2o e2 ~o2 - 7i - -.2k 

The. sol_ution of Eq. (23) for positive values of 
K, sat1sfymg the condition (22) in the frequency 
range w « w and 1/ r « w up to the terms 

. 20 2 20' 
of first order m the small quantities wj kg01 , 

wjkf02, 1/ rl kS'01 and l/ r2 kg02 , has the form: 

+~ 1 
~02 1 + ( w2 I w2 > ("2 1.2 > , 

1o 20 "o2 "oi 

r=-1- 1 
'<1~01 1+(w2jw2)(!:2/z=2) 

20 10 "o1 "o2 

(25) 

From the relations (24), (25), we see that the 
ions play an essential part in this case of propa­
gation of a perturbation in the plasma. Thus their 
contribution to value of the space period is the 
same order of magnitude as the contribution of the 
electrons. The direction of propagation of the 
disturbance is determined entirely by the ionic 
component, and in fact coincides with the direction 
of drift of the ions; i.e., the disturbance propa­
gates only in the direction of the cathode. This 
last statement follows from the expression for the 
group velocity, which is a consequence of Eq. (24): 

(26) 

Let us examine Eq. (25) for the damping coeffi­
cient in detail. The first two terms in it are due to 
elastic collisions of electrons and ions with neutral 
gas mole_c.ules, the remainder are caused by the 
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Coulomb interaction, with the wave, of randomly 
moving electrons and ions. Here the collisions of 
the ions with molecules play a dominant role 
compared with collisions of electrons with mole­
cules. As we know, collisions lead to damping of 
the wave. As for the last two terms in the expres­
sion for -y, the modulus of their ratio can be greater 
or less than unity, depending on the temperatures 
of electrons and ions; thus for E1 < 4®1, the ionic 
term exceeds the electric one, wllile for ®I> 4®2 
the electronic term can far exceed the ionic term, 
so that the latter can be neglected. The electronic 
term appears in {25) with a minus sign, i.e., it 
makes possible an increase in the amplitude of the 
wave. Consequently, in this last case, because of 
the Coulomb interaction of the electron and ion cur­
rents, there results a decrease in the damping, or 
even the ocurrence of waves with rising amplitude 
{ 'Y< 0). This will occur if: 

(27) 

where le= to I 7). is the mean free path of the electrons. 
Condition (27) is fulfilled for le» a!. As le 

decreases, the terms in 'Y due to collisions increase 
until, for le less than a1 ( v;e/~!1 ) exp {~:tf v;e}, 
the damping coefficient is of the same order as the 
terms due to collisions, and has a positive sign. 
It is still meaningful to speak of a space-periodic 
distribution of the charged particles (fixed or mo­
ving) in this case, if le » t"o 1 / w 10 > ~ since then 
y«K. 

Thus spatial periodicity in the distribution of 
particle density, potentials, etc., can exist only 
£or l >a which coincides with the criterion given e 1' 
by many authorsl3,14. 

According to the paper of Zaitsev et al8•9 , for 
certain special cases there exists a region near 
the anode in which the drift velocity of the elec­
trons is comparable to the thermal velocity or 
even exceeds it. This effect, which is caused by 
the large potential gradient at the anode, enables 
us to compare the results of the present section 
with experiment. According to Zaitsev' s data, for 

anode striations (i.e. striations moving from the 
anode to the cathode), N::t:>1dl-109 electrons/cm3, 

l3 lu. L. Klimontovich, J. Exper. Theoret. Phys. 
USSR 21, 1292 (1951) 

14 A. I. Akhiezer and Ia. B. Feinberg, Doklady Akad. 
Nauk SSSR 69, 555 (1949) 

(in the positive column N,...1010 electrons/cm3), 
.~01 j =108cm/sec, T =3 ·10 4 °K ( ~01 1 > vTe), 

A. =2.5 mm. The calculated value for the period, 
fr~m formula (24) for w < 105 - 106 c.p.s. in 
zeroth approximation is : A= 5 mm for N = 108 
el./cm'l, and A=L6 mm forN=109 el./cm3. The 
agreement of theory with experiment is good, 
considering that the concentration in the experi­
ment is not known exactly. In this frequency 
region, the period hardly depends on the frequency 
and is the same as the period of fixed spatial 
inhomogeneities, as the experiments show. 

It is interesting to note that the expression (24) 
gives the correct qualitative dependence of the 
space period on pressure. In fact, we have from 
(24), approximately, A .... (2rr/yi5)(t01 /Ul_to ) .. Since 
~ increases with decreasing pressure, while the 
cohcentration decreases, A increases with decrea­
sing pressure. 

The decrease of A with pressure also occurs in 
the case of w = 0, discussed in the second section. 
For l:'Te=t" 01 we can obtain from (13) the follow­
ing expression for the space period: 

where A is a numerical factor. So, with increasing 
N, the space period decreases. 

More complicated is the case of vTe» t"m . 
Here one cannot •draw any definite conclusions 
concerning the pressure dependence of,\. The 
result will depend on the relative rates of change 
of t 01 and N with pressure. 

In addition to considering these special cases 
(large drift velocity, high and low frequencies of 
vibration), we also found general conditions under 
which the motion of the ions can be disregarded 
completely. These conditions, obtained from ana­
lysis of the "dispersion" equation (57) of paper 
I, have the following form: 

(28) 

As expected·, the motion of the ions can be n.eglec­
ted for sufficiently high oscillation frequencies. 

We take the opportunity to express our gratitude 
to A. A. Zaitsev for the interest he has shown in 
this work, and for his advice. We are_ also grate­
ful to V. N. Faddeeva for preparing thetablesofthe 
probability integral of complex argument. 
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