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what artificially from the point of view of Gel'
fand and laglom's theory of particles of higher 
spin. It is proposed that the consideration of the 
problem in the infinite-dimensional case can be 
connected with the general theory of non-local 

Translated by A. S. Wightman 
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fields, giving vectors in hilbert space 7. 
In conclusion, I want to express my thanks to 

Professor D. D. Tvanenko for a series of re
marks and numerous discussions of the results 
of this work. 

7 D. Ivanenko and A. Sokolov, Klassische Feld. 
Theorie, Berlin (1953) 
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. Th~ problem of propagation of longitudinal waves in a plasma under given boundary condi
tions IS solved. A "dispersion" equation which takes into account motion of the ions is 
obtained. 

I. INTRODUCTION 

I N studying the processes discovered by Lang
muir, of vibrations in a plasma which arise be

cause of the Coulomb interaction of charged part
icles, one usually considers only the motion of the 
electrons. The method proposed by Vlasov 1 for 
investigating specific electrical properties of 
plasma--the self-consistent field method--basically 
is applied only to them. Because of their large mass, 
the ions are considered as a positive background 
having no effect on the vibration of the electrons. 

It is true that recently the necessity for consid
ering ionic vibrations has been pointed out in 
several papers 2- 4 However, no detailed investi
gations like. those for electrons 5 •6 exist in the 

1 A. A. Vlasov, J. Exper. Theoret. Phys. USSR 8, 291 
( 1938); Scientific Reports, Moscow State University 75, 
Book II, part I ( 1945}; Theory of Many Particles, State 
Publishing House, (1950) 
2 G. Ia. Miakishev, Dissertation, Moscow State University, 
<~m . 
3 M. E. Gertzenshtein, J. Exper. Theoret. Phys. USSR 23, 
669 (1952) 
4 V. P. Silin, J. Exper. Theoret. Phys. USSR 23, 649 
(1952) 
5 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1864, 
(1949) 
6 Yu. L. Klimontovich, Dissertation, Moscow State 
University (1951); J. Exper. Theoret. Phys. USSR 21, 
1284, 1292 (1951) 

literature*. 
Ions can play a significant role in the vibrational 

properties of a plasma. In fact, since the mean free 
paths of electrons and ions are comparable, the 
squares of their transitional velocities areinversely 
proportional to their massesM/m. Therefore, during 
the passage of electrons and ions through aregion 
of varying potential (an oscillati_ng electrical double 
layer,etc.) the amJ>litude of vibration of the ions may 
turn out to be comparable to that of the electrons or 
even to exceed it, if the time for traversal of the 
region is smaller than the period of the variable po
tential. This behavior is clear, since the time for 
traversal of the region by the ions is M/m greater 
than for the electrons, although the acceleration 
given to the ion is a factor m/M smaller than that 
of an electron. 

The ions play a special role when we consider 
the peculiar auto-oscillation process in plasma which 
leads to the possibility for occurrenceofpractically 
undamped waves, despite the occurrence of colli
sions 3. The presence of two streams of charged 

particles (electrons and ions) with different veloci
ties results in the appearance of undamped oscilla
tions if the losses of energy from the wave due to 
collisions are compensated by a transfer of energy 
from the directed motion to the wave via the 
Coulomb interaction of the two particle streams. 

A rigorous solution of the problem oflongitudinal 

flasma oscillations (not considering the ions or col
isions) was given in a paper of LandauS for the case 

where the initial deviation of the distribu-

* We consider the paper of Bazarov [e.g., see 
I. P. Bazarov, J. Exper. Theoret. Phys. USSR 21, 711 
0951) ], which investigates the effect of the ions on the 
propagation of longitudinal waves in a plasma, to be 
unsatisfactory . In particular, in deriving the initial 
dispersion equation which is the basis of the investi
gation, an algebraic error is made as a result of whic'h 
electronic and ionic terms which are proportional to the 
square of the charge have different signs in Bazarov's 
equation. 
8 L. D. Landau, J. Exper. Theoret. Phys. USSR 16, 574 
(1946) 
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tion function from equilibrium is given (initial 
value problem). Up to the present time there has 
been no formulation and rigorous solution of the 
problem of plasma oscillatiol' under assigned 
boundary conditions. This is precisely the problem 
which occurs when we consider plasma oscilla
tions (e. g. in discharge tubes) which have station-

ary character. . . . 
The purpose of the present paper IS to mvesh-

gate stationary plasma oscillations caused by 
Coulomb forces, for given conditions at the bound
ary, and to analyze the part which ions play in the 
propagation of longitudinal waves in a plasma. 

Keeping in mind that there are observed in 
plasmas sinusoidal oscillations with amplitudes not 
related to the magnitude of the ionization po
tential, an attempt is made in paper 11. (v. the 
following paper) to identify the longitudinal 
density waves considered here with the experi
mentally observed striations, and to compare the 
theory with experiment. 

2. FORMULATION OF THE PROBLEM 

The basis of all our later considerations is the 
set, of kinetic equations for electrons and ions 
which takes into account the interaction of the 
charged particles by using the method of the 
self-consistent field in the form proposed by 
Vlasov 1 . Elastic collisions of charged particles 
with neutrals are included by means of a Boltzmann 
integral term. 

The initial system of equations has the follow-

ing form: 

il/2 + V. il/2 +.!_grad (m + (!) ) il/2 (2) 
d t • ilr M T • ext. iJv 

+r.n -t-eo 
Llrp =- 4rre ( ~ / 1 (dv)- ~ / 2 (dv)), (3) 

-oo --= 
where ft = h(r, v, t}, {2 = { 2 (r, v, t)and 
ea = fa(r, v, t) are the distribution functions for 

dectrons, ions and atoms in the spatial coordinate 
r-and velocity v, depending on the time t; V 1 is the 
relative velocity of electron and atom, V the 
relative velocity of ion and atom; du1 ana du2 are 
the differential cross sections for collision of 
electrons and ions with atoms; e is the algebraic 
value of the electron <;_harge; m and M are the 

electron and ion masses; ¢ext is the potential of 
the external electric field in the interior of the 
plasma, which is responsible for the drift of elec
trons and ions; ¢ is the total potential of the 
self-consistent field. 

An arbitrary disturbance in some portion of the 
plasma will be taken care of by assigning a cor
responding boundary condition (concerning this, 
more later). In the absence of perturbat¥>ns, the 
system of equations ( l) to (3) determines a distri
bution of electrons [ 10 , and of ions {20 , which 

are time-independent. We shall consider a quasi
neutral plasma for which, in the absence of pertur
bations, the mean densities of ions and electrons 
are equal, i.e. 

+co += 
-~ f 10 (dv) = ~ /2o (dv). 
-ro -co 

For the case of a uniform distribution of particles 
in space in the absence of perturbing forces, the 
system of equations (l) to (3) splits up into two 
independent equations: 

(4) 

It grad !fe~ = H (J~o!:- !2o!a> v2 dcr2 (dva>· 

Equations like Eq. (4) have been solved by many 
authors. Fqr weak constant currents, under the 
assumption that the cross section for elastic col
lision of electrons with gas atoms is inversely pro
portional to their velocity, the distribution {10 ,as 
shown in papers (6, 9) is Maxwellian around the 
drift speed of the electrons. Under the condition 
that the electrons, in moving through a free path, 
receive energy far in excess of the thermal energy 
of the gas atoms, the distribution has the form: 

f _ N( m )'/, { m(v-v01)2} 
Io- z,.e1 exp - 281 , (6) 

where N is the electron concentration, ~1 =kT 1, 

k is the Boltzmann constant, T 1 is the absolute 
temperature of the electrons, v0 1 is the mean 
velocity of·their directed motion. 

7 1. P. Bazarov, j. Exper. Theoret. Phys. USSR 21 711 
(1951) ' 

9 Taro Kihara, Revs. Mod. Phys. 24, 45 (1952) 
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The applicability of such a distribution to the 
case of high currents (iv01 i ~ vte = 281 /m) 
has not been established theoretically. 

The distribution function [ 20 of the ions is 
much more difficult to find than the distribution 
function for the electrons. Investigations in this 
direction have been carried out either for very spe
cial cas~s or under crude physical assumptions 
( Kihara , F ok 10 and others). Still, the use of a 
Maxwell distribution for the ions does not lead to 
any clear discrepancy with experiment, and is 
used by many authors (for example, Vlasov 1 and 
Klimontovich 6 ). ·In our calculations, we shall 
also use as a zeroth approximation (no perturbation) 
a.Maxwell distribution for the ions: 

j. =N(.M )"'•exp{-M(v-voa)a\ (7) 
~O 27t82 28a J ' 

where 8 2 = kT 2, T 2 is the absolute temperature of 
the ions, v02 is the drift velocity of the ions. 

We carry through a linearization of the initial 
equations (l)- (3), assuming that the redistribution 
of the plasma particles due to a given perturbation 
in some part of the plasma is small. Thus, we set:< 

(8) 

noting that [ 11 << [ 10, [ 21 << [ 20 , ¢ << ¢ext· 
Then we obtain for [ 11 and [ 21 (in the case of 

small currents, determined by the potential ¢ext' 
the following ~ystem of equations: 

at~i -¥vatu-!!.... grad (l) aho = - _!_ f (9) at or m • dv '~'1 11 ' 

atn + v atn +.!!....grad r.? a12o = _ _!_f (lO) 
rlt dr M • av -r2 21 ' 

+co +oo 
~~ =- 4rce ( ~ / 11 (dv)- ~ /21 (dv)) .(ll) 

-co -so 

The right side of Eq. (9) is the usual approxima
tion of the Boltzmann term for the electrons, which 
has been used in many papers concerning plasmas 
( l / Tl is the electron-atom collision frequency). 
In just this same way the right side of Eq. (lO) is 
the first approximation to the Boltzmann term for 
the ions in the case of small perturbations ( "2 is 
the mean free time for the ions). 

Over the plane x = 0, we·preassign a perturba
tion which is periodic in time with frequency w (it 
is sufficient to consider a periodic perturbation, 
since, by virtue of the linearity of the system of 
equations, the solution in the case of an arbitrary 
perturbation can be represented in the form of a 
Fourier series or integral with known harmonics). 
Then the solution of the system of Eqs. (9)- (ll) 
describes the process of propagation of the given 

10 V. A. Fok, J. Exper. Theoret. Phys. USSR 18, 
1049 0948) 
11 

E. Hop£, Mathematical problems of radiative 
equilibrium, Cambr. Tracts 31 (1933) 

disturbance into the plasma. Since we are 
considering a plane problem, 

f 11 = f 11 (X, V, t ), 

f21 = f21( x, v, t} and¢=¢( x, t). 

For convenience we integrate the system of equa
tions over the y and z .components of the velocity. 
Once more designating the functions ll f ll d T)d C and IT f 21 d T)d C thus obtained 

by [ 11 and [ 21 , we obtain 

~~ =- 4rce crfn d~-+r /21 de), {14) 
-co -oo 

where 

(15) 

The problem we have formulated--the propagation 
in a plasma of longitudinal waves arising from a 
perturbation at the boundary x = 0 which varies 
periodically with frequency w (a boundary value 
problem) which is analogous to the problem of 
Landau 8 in which he investigated the time behav

ior of a perturbation in a plasma (initial value 
problem). Therefore, generally speaking, we can 
also apply to our problem the method of solution of 
Landau, which makes use of one-sided Laplace 
transformations applied to the initial equations 
(the problem for the half-space [ x = 0, x = oo] ). 
In our case this method requires that at x = 0 the 
functions 

fi 1(0, g, t), [21 (0, g, t), 

¢(0, t}, (o¢/ox) (O, t}. 

shall be given. 
However, in specifying our boundary value 
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problem* we can assign arhitraily only the magni
tude of the current of particles entering the medium 
through its boundary, so that we can assign the 
functions listed above only for positive values of 
~ (we take the + ~axis along + x ). The form of 
these functions for negative values of ~is already 
determined by their form for ~> 0, since the cur
rent of particles emerging from the medium across 
its boundary is automatically regulated by proces
ses going on in its interior (collisions, Coulomb 
interactions, etc.). In our case the decisive role 
in this respect is played by the elastic collisions 
of the charged particles with neutrals; this is made 
clear by the fact that the solution of our linearized 
sys'tem of equations in which we neglect collisions 

:( 1 I T1 = 1 I T2 =o) ~nd use the method of Landau, 

'does not lead to any auxiliary conditions of 
consistency which must he satisfied by the func
'tions fn ( 0, .;, t ), {21 ( 0, .;, t ). At the same time, 
if we include collisions, this same method leads to 
an auxiliary condition for consistency, which must 
he satisfied by the functions f 11 ( 0, .;, t) and 

f21 ( 0, .;, t) because of the dependence of the 
form of these functions for ~ < 0 on their values 
for $ > 0. It is therefore natural to choose a meth
od of solution of the problem which goes with the 
direct assignment of the distribution function for 
the particles only for ~> 0. Such a method of solu
tion was suggested to us by N. N. Bogoliuhov, and 
is carried through in the the following section. 

First we simplify the equation system (12)- (14) 
by making use of the fact that a perturbation on the 
boundary which varies periodically with frequency 
w, results in propagation in the plasma of a per
turbation which varies in time with this same fre
quency. Setting 

fu(X, ~. i)='f11 (X, ~)e-i"'t, 

/21 (x, ~. t) = ~21 (x, ~) e-i"'t, 
cp (x, t} = 91 (x) e-i"'t, 

(16) 

!Ye obtain for the fu~ctions t/;11 , tj;21 , ¢ the follow-
mg system of equatwns: 1 

*The specification of the boundary value problem was 
pointed out to us by A. N. Tikhonov and N. ~. 
Bogoliubov. 

_ iw•h + E olJi21 + eN orp1 oF2,o _ 1 ( 18 )• 
'~' 21 ax M ax o~ --"21 ?21, 

+co +co 
L\rp1= -47te( ~ ?ud~- ~ ~21 d~). '(19) 

-co -00 

3. SOLUTION OF THE PROBLEM 

We shall solve the system of equations (17)- (19), 
subjecting the functions 1{111 and .p21 to the follow~ 
ing boundary conditions: 

?u (0, ~) = / 1 (~), ~ > 0; (20) 

?21 (O, e) = !2 (~), ~ > o; (21) 

Yu ( oo, ~) = 0, (22~ 

·h1 ( :xJ, ~) = 0. (23) 

The last two conditions correspond to absorp
tion at infinity. We could also consider similarly 
the case of a totally reflecting wall at one of the 
boundaries, or other cases. 

We also want to point out the close connection 
between the formulation ~f our present problem of 
propagation of longitudinal waves in a plasma and 
that of the well known problem of Milne 11-13 
concerning the scattering and absorption of light in 
the atmosphere. 

A sol uti on of Eqs. ( 11) and (18) for the functions 

~t/Ju( x, ~), ~t/1 21 ( x, ~)satisfying the boundary 

conditions (20)- (23), can .be given in the form 

~?n (x, ~) = ~/1 (~) exp {- ~ ( "~ - iw )} (24) 

eN ~;r { x-x'( 1 )' + -.- exp --- -- iw \ 
m !; '~'1 J 

0 

co 

~?u (x, ~) = - e: ~ exp {- x !; x' ( "~ - iw )} 
.t' 

12 
E. Titchmarsh, Introduction to the Theory of Fourier 

Integrals (1948) 

13 V. A. Fok, Matern. Sbornik 14, 3 (1944) 
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X aqlt (x) aFI.o (~) d , 
~ a~ x, ~<O; 

~1J21 (X, ~) = V2 (~) exp {- ~ ( T~ -.i<U )} 

eNf { x-x'(i ) ~ M ~ exp --~- -:r;- icu } 
0 

x ocp1 {r) aF2.o m d , 
ar a~ x , ~ > o, 

eN r { x-x' ( 1 )}(25) ~'¥21 (x, e) = M J exp - -~- T; - icu 
X 

X . dcp1 (x') aF2,o m d , 
ox' a~ x • 

We introduce the following notation: 

(X) 

~ if1 (e) exp {- ~ ( : 1 - icu) }d~ =· U 1 (x); (26) 
0 

(X) 

0 1.(x) = ~ exp {- ~- (:1 - i(J) )} (27) 
0 

0 

0 1 (x)=- ~ exp{-: c~ ~i(J))} 
-oo 

x<O; 

(' { X ( 1 ) (28) J V2 (~) exp - T -:r; - i(J) } d~ = u2 (x}, 
0 

00 

G2 (x) = ~ exp {- ~c.: -i(J) )} (29) 
0 

cJF2.om ~ 
a~; dr;, x >O, 

0 

02 (x) = ~ exp {- :- c: -i(J))} 
-oo 

X. cJF2,o (/;) d" < 0 
a~ <;, x . 

Then 

+oo 
~ ~·~ 11 (x, ~) d~ = ul (x) 

-oo 

+oo 

ro 

+ eN(' O ( ') cJep1(x')d '· m.) 1x-x -aT x, 
0 

~ ~1J21 (x, ~) d~ = ~ (x} 
-oo 

ro 

eN ( O ( ') cJr,p1 (x') dx' -MJ 2x-x dT . 
0 

(30) 

(31) 

In addition we make use of the equation of con
tinuity associated with the system of equations 
(17)-(19): 

where +oo 
j 11 (x} =e ~ ~'f 11 (X, ~)d~, (33) 

-co 

+oo 

j21 (x) === - e ~ ~1J21 (x, ~) d~, 
-oo 

+"' +oo 
p (x) = e j 'fu (x, ~)de-e ~ '¥21 (x, ~) d~. 

-co -oo 

.Equations (32) and (19) lead to the relation 

Setting ( ) 
U1 X 

(35) 

we obtain from the relations (30); (31), and (34) 

acp~;x) = 47teU (x) (36) 
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<X) . 

+ 4rrNe2 \ O ( _ ') iJ<p1 (x') dx' 
m ) 1 X X iJx' (1/Tl)- iw 

0 

We define 

co 

+ 4rr;e2 ~ 02 (x - x') 
0 

iJcpl (x) /ox= f(x), <37) 

4rreU (x) = g (x). (39) 

From (36), we obtain for f( x) an integral equa
tion of the form: 

j(x) = g (x) + ~ k (x - x')j(x') dx(4o) 
0 

with the kernel 

co 

k- (x)-:- w2 r exp f-..::_(~- iw)} 
10 J \ ~ 't'l 

(41) 
0 

X 

0 

k(x)= -wio ~ exp{- ~ (;1 -iw)} 
-co 

X . iJFI.O (~) d~ 
d~ (1/T1)- iw 

where w10 = V 4rrNe2j"m and W20 = Y 4TCNe2 / M 

are the Langmuir oscillation frequencies of the 
electrons and ions, respectively. The free term 
has the form 

00 

g (x) = 4rre ~· ~/1 (~) exp {- ~ ( ~ - iw )}(42} 
0 

00 

- 4rre~ ~/2 (~)exp {-: ("~ -iw)} 
0 

Equations like (40) come up in many problems of 
mathematical physics 13. For example, the pre
viously mentioned Milne problem concerning the 
scattering and absorption of light in the atmosphere 
coincides with ours in its formulation and leads to 
an equation of this same type. An equation of this 
type was investigated in detail by Fok 13 who 
gives the method of solution, and proves the ex
istence and uniqueness of a solution falling off at 
infinity (x-> oo), under the following assumptions 
concerning the kernel k (x) and the function g (x)*: 
th~ kerqel itself and the functions g (x), k 1 (x) = 

ec{~ (x), for some c > 0, shall be absolutely in
tegrab.le and have bounded variation in(an infinite 
interval. If the equation l - K (w) = 0 K (w) 

+oo 

= Jk (x) eiwxdx)has real roots in addition to com

-co 

* Fok considered an equation with a symmetric ker
nel; but one can show that, without changing his argu
ment essentiallr, the basic results remain valid also for 
an unsymmetric kernel. 
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plex roots, one must add to the previous condi
tions the requirement that these same conditions be 
satisfied by the function (lng(x))xs-l g(x) (where 
s is the maximum multiplicity of the ro().t) and the 

00 

orthogonality condition: f g(x)y,(x)dx = O(where 

0 
the y, (x) are any linearly independent solutions of 
the homogeneous equation). 

The asymptotic behavior of the solution is de
termined hy the equation 

. 
r -I<(w)- 0 (43) 

or, defining 

+oo 
-iw=p, ~ e-Pxk(x)dx=K(p)J4.4) 

-oo 

hy the equation 

1-}((p) = 0, (45) 

where K(p) is analytic in the strip- c <Rep< c: 
in fact for x-> oo the solution has the form 

where P-k i~ tha; root of Eq. (45) with Rep < 0 
which is closest to the imaginary axis. 

In order to apply Fok's method to the solution 
!>fo.ur Eq. (40), w,e must first verify that the kernel 
k (x) defined by (41) satisfies the required condi
tions. 

Keeping in mind that particles with infinitely 
large velocities do not affect processes in the plas
ma, we shall, for convenience in applying the a
hove mentioned method of solution, set 

where 

Nol (~) = exp { I e - eoll"' (m I 281)"12} 
No2 (e) = exp {I e- ~ozl~ (M I 282)~12}' 

Fi,o<e), F2,o<e) are Maxwellian velocity dis
tributions for the electrons and ions, as given by 
Eq. (15); a, b, oc, f3 are arbitrary constants satis
fying the conditions: a » 21 e0 1 I. b » 21 e()2 • 
0 < oc < l, 0 < {3 < l; the constants A and B are 
determined from the condition of continuity of the 
functions F I,o<e) and F 2 ,0 <e): 

(~9) 

B _ exp {- M (b- ~02)2/ 282} 

- exp {- N02 (b)} • 

II: is llDt difficult to see that k (x) is a continuous 
function of :X, since the integrals defining k (x) 

converge umformly in x and the functions in the 
integrands are continuous. Consequently we need 
only investigate the behavior of k (x) at infinity. 
One can obtain an upper bound: for the modulus of 
k,(x): 

lk(x)l< CJx!e-crxi, (SO) 

where 

(51) 

{ ( m )'I• C =max 2 (I +A) 21t81 
(52) 
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The estimate obtained for k (x) shows the following: 
l) k (x) is an absolutely integrable function in 

the infintte interval (- oo, + oo ). 
2) ec I xI k (x) is also an absolute! y integrable 

function in the infinite interval (- oo, + oo) for 
0 < c' <c. 

Differentiating k (x) under the integral sign, one 
can show in just this same way that k'(x) is an ab
solutely integrable function in the infinite interval. 
At infinity, k'(x) decreases no more slowly than an 

fXPO.JleJ,ltial rith exponent ex/ 2. It is obvious that 
l ec lXI k (x)j is also absolutely integrable in the 

mfinite interval for c "< c/2. The condition of ab
solute integrability of the derivative is sufficient 
to make the function have bounded variation in the 
infinite inte,rval. Consequently, the functions 
k (x) and e c 1 xI k (x) have bounded variation in that 
interval. 

It is not hard to see that the function g (x), de
fined in terms of the arbitrary functions fi ( ,;), 
[ 2 (,;) by (42), also satisfies the requirements im-

posed, if [ 1 (,;)and [ 2 (,;) decrease sufficiently 

rapidly at infinity. 
The preceeding discussion allows us to con

clude that Fok's method applies to the solution of 
Eq. (40). Therefore we can assert that there 
exists a unique solution of (40), falling off at in
finity, and that its asymptotic behavior is given by 
the "dispersion"Eq. (45). 

We transform this last equation to a somewhat 
different form. For this purpose, we calculate 
-too f k (x) e-pxdx, substituting fork (x) its expression 

in (41). We carry out the computation for the 
electronic part of the kernel, k e (x). 

+oo oo oo 

\ k (x'J e-p:r: dx = w2 \ { \ iJFI.o 
J e 10 J J d~ 

-oo 0 0 

(53) 

X exp {-(x/~)[(1/T1)-iw]} d~} -pxd 
(1!-rr)-iw e X. 

For values of p with Rep> 0, we can, in comput
ing the first integral, reverse the order of integra
tion; then 

X e-Pxdx 
2 00 

wlO \ iJFl.O d~ 
= - 7 J ~ ~- (iw I P) + (1 / "IP) 

0 

We obtain a similar expression for the second in
tegral,_ calculated for values of p with He p < 0: 

iJFl,O d~ 
~~-(iwfp)+(1/TJP) 

-oo 

+Oo 

But, since 1 ke (x) e""'"Px dx is an analytic function 

--
of the complex variable p ( cf. page 18) in the 
strip - c N < Re p < c ", we obtain the expression 

for r klx)e-pxdx by analytic continuation of --the smh of the integrals (54), (55) over the strip 
-c "< Re p < c ": The ionic part of K (p) is cal
culated similarly. Finally we have 

+oo 2 

~ k(x)e-Pxdx =- :!0 (56) 
-ro 
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where the contours C 1 and C 2 go along the 
real axis from e = -oo to e = +oo circling the 
points eP = (i (U I p) - r 1 I 7i p J (for the contour 
C1) and~ =(iilllp)-{liT2p) (for contour 
C2 ) from below. 

Now the "dispersion" equation defining the 
asymptotic form of the solution for the longitudinal 
electric field produced in a plasma by a periodic 
perturbation at the boundary can be written in the 
form 

(57) 

where k =-ip, and the contour C 1 bypasses the 
point ill I k + i I T1 k, and the contour C 2 similarly 
bypasses the point ill I k + i I T2 k from below. 

At sufficiently large distances from the source 
of the perturbation, the distribution of field (and 
·particles) will be approximated to sufficient accur.-

acy by an expression of the form A enJ.... (illt -kx )} 
( where k is the root of Eq. (57) which -j~l~losest to 

the imaginary axis} The quantity 2TT IRe k repre
sents the spatial period of the propagating disturb
ance, while lm k is its logarithmic decrement*. 

The last equation differs from the one obtained 
by Landau 8 for the dispersion of longitudinal 
waves in a plasma due to a given perturbation at 
the initial time, by terms which take into account 
the ions and the collisions of charged particles. 
with neutrals. In addition, in Eq. (57) k is com
plex and ill is a real number (ill > 0 }, whereas in 
Landau's equation ill was complex and k was a real 
number. 

In conclusion, I express my deep appreciation to 
N. N. Bogoliuhov and G. Ia. Miakishev for the help 
they gave me in this work, and also to A. N. 
Tikhonov, M. V. Keldysh, M. F, Shirokov, and 
lu. L. Rabinovich for discussion and valuable ad
vice in completing the work. 

Translated hy M. Hamermesh 
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* The "dispersion" equation (~7) also gives the 
cr.i.terion for occurrence of antidamped solutions, al
though a rigorous solution of the problem for this 
case (i.e., a determination of the amplitude) cannot 
he given within the realm of the linear theory. 


