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Energy and angular distribution of slow nucleons which result from nuclear reactions 
are obtained. An estimate is given of the probability of production of nucleons in a 
bound state. 

} IF as a result of nuclear reactions particles 
• with low kinetic energy are produced, the mu­

tual interaction of these particles may substantially 
influence their distribution in energy. The case 
will be considered in which two or more nucleons 
are obtained as reaction products, each with kine­
tic energy which is small compared to the interac­
tion energy. 

In this paper we obtain the distribution in energy 
of the nucleons which result from collisions of a 
nucleon with a deuteron and a deuteron with nuclei. 
In order to obtain the distribution in energy of the 
slow nucleons which are produced, it is sufficient 
to make use of quite general properties of their 
'-Jl- functions, and hence it is also possible to make 
some inferences concerning the distribution in 
energy for more complicated nuclear reactions. 
Below we give an estimate of the ratio of the 
cross-section for deuteron formation (or the di­
neutron, if it exists) to the cross-section for 
production of free nucleons. We also obtain the 
angular correlation between exit directions of the 
two nucleons which results from their interaction. 

2. Let a nucleon be incident on a deuteron, and 
let the velocity of the nucleon be much greater 
than the velocities of the neutron and proton in the 
deuteron. In order to obtain the cross-section for 
this process we shall use a method analogous to 
the one used in molecular theory, where one makes 
use of the smallness of the velocities of the nuclei 
as compared with the velocities of the electrons. 
In analogy with the molecular case, it is necessary, 
in order to find zero order functions, to solve first 
the problem of the scattering of the incident 
particle by the fixed nucleons of the deuteron. The 
zero order functions will have the form 

* Read before the theoretical seminar at the Institute 
for Physical Problems in October of 1950. 

Note added in proof: Since completion of this work 
¥veral papers dealing with this problem have appeare~ 
Lsee, e.g., K. M. Watson, Phys. Rev. 88, 1163 (1952)J. 
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where \jJ is the function of the incident particle in 
the field of fixed particles of the deuteron, ¢ is a 
function of the slow nucleons. 

If the scattering function of the incident parti­
cle with neutron and proton as scatterers is known, 
then neglecting the influence of the neutron on the 
function describing the scattering on the proton, 
and vice versa (this is legitimate for high energies 
of the incident particle, when ya «r d• where a is 
the scattering cross-section and r d is the radius of 
the deuteron), we obtain the asymptotic form of the 
function tj; 

where q = k -k, k = kr3 /r ,and & and J; are 
scattering ~mplitudes of the incident particle on 
the nucleons l and 2. 

The wave function of the system of all three­
particles will be determined by the condition that 
when k0 r 3 --. - oo , the wave function must have 
the forme iko r 3 ¢0 (r 1 ,r ) where cA (r 1 ,r 2) is the 
wave function of the Jeuteron. the asymptotic 
form of the wave function of the entire system in 
zero approximation is given by the expression 
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'Y ~ eik, r,"' ( r r .) -l- (/ eiqr, 
Ta~OC: 1 0 ' 1' 2 1 1 

Expanding the expression 

(j1eiqr, + j 2eiqr,) Cfo (rl,r2) 

in terms of the eigenfunctions of the two slow 
nucleons produced as a result of the collision, 
and squaring the expansion coefficients, we obtain 
the cross-section for scattering with production of 
nucleons in various states. Introducing coordi­
nates r = ri- r2; R = (ri + r2) I 2, we obtain, 
after integration with respect to R 

(l) 

where dwk is the element of solid angle contain­
ing the vector k; Xo and XI are functions of the 
charge and spin coordinates of the two nucleons. 
The functions cf> (r) are normalized to unit volume, 
function ¢, to mfity. The summation is with 
respect to 0the spin and charge variables of the two 
nucleons; P is the momentum of particles 1 and 2 
in their center of mass system. 

The cross-section for production of two nucleons 
in a bound state has the form 

(2) 

with functions ¢1 normalized to unity. In the case 
of collisions without exchange the function cf>I 
coincides with cp0 . Scattering amplitu~es {1 and 
{2 contain, in general, exchange terms m spm and 
charge variables. Hence during the scattering 
process changes may take place in the spin and 
charge states of the nucleons. 

3. The integrals in the expressions (l) and (2) 
cannot be calculated for large q since in this 
case values of r-1 I q are Important while the 
functions cf> and cf> are known only for r>r 0 , 

where r ispthe range of the interaction forces. For 
what follows only the dependence of Eq. (l) on the 
interaction energy of the nucleons is essential. 
This dependence may be easily found for the case 
that 1iq is large compared to the momentum of the 
particles in the deuteron and compared to the mo-

mentum P. In this cas~ in the integrals of Eq. (l) 
the region of small r{r-1 I q) is essential, and the 
probability of finding the nucleons with relative 
wave vector P which lies in the interval dP, is 

(3) 

4. Let us consider the case of a non-exchange 
collision. Then one has in the final state (besides 
the fast nucleon) a slow neutron and a proton. As 
is easy to obtain from the theory of scattering of 
neutrons by protons*, 

I CfP (rt) 12 

= E~e {1 + o(p~~)}, 
where A does not depend on the energy, E is the 
energy of relative motion of the nucleons, € = t:0 = 
2.2 MeV for parallel spins and € = t:I = 0.07 MeV 
for antiparallel spins of neutron and proton. Subs­
tituting this expression into (3), it is easy to 
obtain 

d np - C f l a } dP 
W P - np l E + eo + E + el . (4) 

The quantity a determines the amount of admix­
ture of the component depending on the spin in the 

non-exchange scattering amplitude. The angular 
distribution of the nucleons in their center-of-mass 
system is spherically symmetrical. 

Formula (4) shows that the energy distribution 
of the nucleons has a maximum at energies of the 
order of E. 

5. When, as a result of the exchange interac­
tion with the incident fast particle two slow 
neutrons are formed, it can be seen from (3) that 
they must be in an S-state (functions with non-zero 
orbital momentum are small for small distances ri). 
Then, according to the exclusion principle, their 
spins are anti-parallel, and during the collision a 
change of spin must occur ( in the deuteron the 
spins of the nucleons are parallel). 

The distribution in relative energies is given by 
the expression 

dw~n = CnndP / (E +E). (5) 

* If r1 < r0 the dependence of cf>P (r1 )2 on the energy 

is determined by the dependence on the energy of the 

expression cpp(r 0)2 since when r < r 0 one can neglect 

the energy E compared to depth of potential well. 
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The quantity € is in this case unknown. 
6. In the case of an exchange collision with 

formation of two slow protons the function ¢P(r 1) 

may be obtained from the theory of proton-proton 
scattering I. 2 : 

where 

ft2 [ 1 h ("tJ) ]2}- '/, +- -----+·r£ M a R 1 

F(Tj) = 

1~2 
R = Me2 = 2.9·10-12 eM, a= -7.7-10-13 eM, 

Substituting this expression into (3), we obtain 

dw~P 

F ("tJ) dP (6) 
=Cpp n2 [ 1 h("tJ) ]2. 

F2(1J)E +M - a--R +yE 

As in the case of two neutrons, the spins of the 
protons are antiparallel, and the distribution does 
not depend on the angle of the vector P. 

7. Formula (3) is also applicable in the case 
when a hi-gh energy de~teron is incident on a 
nucleus. The distribution of the two nucleons 
according to energies of relative motion is given 
by the expression (4) if the charge of the nucleons 
does not change, and by expression (5) or (6) if 
there is a change in the charge of one of the nu­
cleons. 

It is possible to calculate the angular correlation 
of the emergent nucleons. For this , it is neces­
sary to integrate the expression dw with respect 
to the component of the vector P parallel to the 
vector P 0 • ( P 0 is the momentum of the center of 
mass of the two nucleons in the laboratory coordi­
nate system. ) 

Introducing the longitudinal (P 1) and transverse 
(P 2 ~ components of the relative momentum of the 

1 L.D. Landau and Ia. Smorodinskii, J. Exper. 
Theoret. Phys. 14, 269 (1944) 

2 J.D. Jackson and J. M. Blatt, Rev. Mod. Phys. 
22, 77 (1950) 

nucleons, we obtain 

Here e is the angle between the exit directions of 
the nucleons. It is easy to see that when P << P 0 

-& = 4P2/P0 , 

hence the angular distribution is given by the 
expression 

For neutron and proton we obtain from (4) 

~ +co 
f(-&) d.&- o c' I { 1 

- 1if np __ )00 [(Pi + P~) / M] + e:0 

+ a' }dP 21t-& d.& 
[(~ +P;)/ M] + Et 1 

(7) 

where E 0 is the energy of the center of mass of 
the two nucleons and is given by E 0 = P6 I 4M. 
The quantity a' gives the fraction of the collisions 
which are accompanied by change of spin of the 
system neutron-proton in traversing the nucleus. 

For two neutrons we obtain 

In the case of two protons emerging after the 
collision Eq. (6) must be integrated with respect 
to the longitudinal momentum P 1. Upon numerical 
integration of Eq. (6), we obtain 

here A is a constant, and the 11 transverse 11 

energy f ~is related to the angle e by the relation 
E2 = E 0 0 I 4, where Eo is the energy of the 
incident deuteron. The function ct> which occurs 
in (9) may be presented in tabular form as follows: 

-E-· ,_(_M_e V_)___:_l_o__.i __ c.___c, ! 3 

l[> 11.00 I 0.821 0.591 0.40 .I 0.341 0.31 

-------------' ___ I ---- ' '----'----

s 
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Equations (3)-(9) hold under the condition that 
e<< eo where eo is the angle of deflection of the 
momentum of the center of mass in traversing 
the nucleus. (This condition is equivalent to the 
condition used in deriving formula (3): P << 1iq ). 

8. In deriving the distributions according to 
the energy of the relative motion and the formulas 
of angular correlation, we used only the fact that 
the probability of the process (for large q) is pro~ 
portional to the square of the function of two 
nucleons at small distances. It may be assumed, 
therefore, that formulas (4)-(9) will apply not only 
in the case when nucleons with small interaction 
energy have been formed as a result of a collision 
of a deuteron with a nucleon or nucleus, but also 
in other cases (e.g., collisions of ex-particles with 
nuclei). 

9. Expressions (5) and (8) which give energy and 
angular correlations of two slow neutrons formed 
as a result of a neutron-deuteron collision, may be 
used for the measurement of the very important 
quantity E, which characterizes the interaction of 
two neutrons with antiparallel spins. 

For this purpose it may be more convenient to 
study the energy of distribution of fast protons 
which resu!t from an exchange collision. 
The energy distribution of the protons can be 
easily obtained from the distribution (5), if we 
restrict ourselves to the region of proton energy 
where the energy of relative motion of the two neu­
trons is sufficiently small. From the laws of 
conservation of energy and momentum one has 

where E and P are the energy and the momentum, 
respecti~ely, ofpthe proton, and Ennis the energy 
of the two neutrons in their center of mass system. 
Let us denote the maximum energy of the protons 
by E~= 2 13E' 0 ; then 

(11) 

The energy distribution of the protons near Em will 
be determined by the fact that the cross-sectign 
for the process is proportional to Eq. (5) and to the 
statistical weight of the final state, 

fp(Ep)dEp 

C 1 p2 dP dE C~ 
= 1 r-+ -1 ~..- p= c:--+ dEp nn E: l Lnn Lnn E: 

Using (ll), we obtain 

(12) 

= CJI2/ 3 [V E;- Ep / (E';- Ep + 2/a r::)] dEp. 

The distribution (12) has a maximum at£';- E p= 2/3 E 

If there exists a di-neutron, then along with dis­
tribution (12) there are monochromatic protons with 
energy given by E 1 = Em+ 2 I 3 E [ as is seen from 
(lO)]. P P 

The cross-section o-0 for formation of the di-neu­
tron can be connected quantitatively with the cross­
section for formation of two neutrons in the free 
state. In fact, the ratio of the cross-sections of 
these two processes is given by the ratio 
¢1, (r1) 2/ ¢0 (r1 ) 2 where ¢o is the function of the 

di-neutron. 
The di-neutron function and the function ¢P 

must be expressed in the same form as for the 
system neutron-proton (replacing E 0 by E ). 

The ratio of these expressions, as is easily seen 
from the theory of neutron-proton scattering and 
from deuteron theory, is given ( for small rl) by 

with the functions ¢1, normalized to unit volume 
and the function ¢0 normalized to unity. It is 
easily seen that with this normalization of the functions 
¢ the ratio of the cross-sections will include the 

p 

expression 

which arises from the ratio of the statistical 
weights of the free and bound states. 

Using (14) and (13), we obtain 

3 VEnn -~~ dcr - cr ---- ---dE 
- 0 47t E ' c: <O' · P 

I nn -r LPZ 

e' -2; c 
~- 3-· 

Os) 

Expression (15) holds only for energies E P 

which are close to Er;. For a rough estimate of 
the total cross-section for formation of free parti-
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cles and the cross-section for formation of the 
hound state, let us assume that the expression (15) 
is valid in the entire range of energies E p· Then, 
integrating (15) with respect to E p from zero to 

E ;', we obtain 

0 0 / ~do~ 4 V s' IE;'· (16) 

10. Formulas (lO), (15) and (16) will also hold 
for the case of the energy distribution oc-particles 
in the reaction: 

H3 + H3 = n + n + a.. 

The energy distribution of oc-particles will have the 
same form as the distribution of protons in the 

reaction considered above: n +H2 = n +n +p. The 
quantity E' in the case of oc-particles is / = 1 ; 3 E. 

The chief difficulty in experiments of this kind is 
the necessity of resolving two maxima in the dis­
tribution curve (of the oc-particles or protons). One 
maximum (at energy EP =E;-2;3€ or Eoc=Eocm_ 113 €) 
corresponds to free neutrons while the other ( at the 

energy E p= E; + 213 E orE oc = E;:+ 113 E) corres­
ponds to the liound state of the two neutrons (if it 
exists). 
Since the quantity E is apparently very small (for 

two protons and for proton and neutron with anti­
parallel spins E 100 ke V), it follows that for a 
proof of the existence of a di-neutron an extremely 
precise determination of the energies of the oc-parti-­
cles (or protons) is necessary. This circumstance 
has not been taken into account in the experimen-

Translated by A. V. Bushkovitch 
1 

tal attempts to detect the di-neutron. 
ll. Expressions (15) and (16), obtained for the 

case of two neutrons, are, of course, valid also for 
the neutron-proton case, if by OQ one understands 
the cross-section for formation of the deuteron, and 
by do- the cross-section for formation of a free neu­
tron and a free proton with parallel spins. It can 
he assumed that these expressions remain valid al­
so for collisions of deuterons and of more complex 
particles with a nucleus. Equation (16) then gives 
an estimate of the ratio of the probability of 
formation of free nucleons to the probability of 
formation of the same nucleons in a bound state as 
a result of the nuclear reaction. The energy Em is 
to be regarded as the maximum energy which i~ 
transferred to the nucleons in the given reaction. 
It is to be noted that an estimate of this ratio with­
out taking into account of the nucleon interaction 
would be given by the ratio of the volume in the 
momentum space in the deuteron•to that in the free 
state, i.e. it would have the form 

0 0 I~ do,._, (:::0 I £m)' 1•. 

Taking into account the nucleon interaction, 
leads, as has been shown, to a much great probabi­
lity of formation of the deuteron. Because of the 
resonance denominator in Eq. (4), one obtains the 
estimate given by (16). This formula explains the 
frequent appearance of deuterons in nuclear reac­
tions. 

The author expresses his gratitude to B. T. Gei­
likman, l.la. Pomeranchuk, and Ia.A. Smorodinskii 
for interesting discussions. 


